CONTENTS

Abbreviation
List of Tables
List of Figures
Aim and Objectives of the study

Chapter-1

Introduction

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Stress</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Physical fatigue</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Theories of fatigue</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Biochemistry of exercise induced fatigue</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Effect of performance in temperature stress</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Smoke induced stress</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Oxidative stress in neuronal system</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Stress amelioration by medicinal plants</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>Role of anti-fatigue agents in performance</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Neuroprotective herbs</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>Medicinal importance of Ocimum species</td>
<td>16</td>
</tr>
<tr>
<td>1.12</td>
<td>Taxonomic classification of Ocimum species</td>
<td>17</td>
</tr>
<tr>
<td>1.13</td>
<td>Ethno botanical uses of Ocimum</td>
<td>19</td>
</tr>
<tr>
<td>1.14</td>
<td>Photochemistry of Ocimum species</td>
<td>19</td>
</tr>
<tr>
<td>1.15</td>
<td>Pharmacological studies on Ocimum</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter-2

Screening of Different species of *Ocimum* for antifatigue property

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials and Methods</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Preparation of plant extract</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Phytochemical screening of Ocimum species.</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Coumarins:</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Flavonoids:</td>
<td>30</td>
</tr>
</tbody>
</table>
2.2.2.3 Tannins: 31
2.2.2.4 Saponins: 31
2.2.2.5 Anthracene Glycosides: 31
2.2.2.6 Steroids: 31
2.2.2.7 Triterpenoids: 31
2.2.2.8 Alkaloids: 32
2.2.2.9 Amino acids: 32
2.2.2.10 Reducing Sugars: 32
2.2.2.11 Starch: 32

2.2.3 Screening of antioxidant activities of *Ocimum* species 33
 2.2.3.1 DPPH radical scavenging activity 33
 2.2.3.2 ABTS radical scavenging activity 34
 2.2.3.3 Hydroxyl radical scavenging activity 34
 2.2.3.4 Metal chelating 35
 2.2.3.5 Estimation of total polyphenols 35
 2.2.3.6 Estimation of total flavonoids 36

2.2.4 Anti-fatigue studies on experimental animal models 36
 2.2.4.1 Animal grouping 36
 2.2.4.2 Weight loaded forced swimming test (WFST) 37
 2.2.4.3 Estimation of tissue glycogen levels 38
 2.2.4.4 Estimation of tissue lactic acid levels 38
 2.2.4.5 Estimation of lipid peroxidation in tissue 39
 2.2.4.6 Serum biochemical parameters 39
 2.2.4.7 Antioxidants assays 39

2.2.5 Cell culture studies 40
 2.2.5.1 Effect of *Ocimum sanctum* on cultured C2C12 muscle cells 40
 2.2.5.2 Cell viability assay 40
 2.2.5.3 Western blotting 41

2.2.6 Statistical Analysis 42

2.3 Results and Discussions 42
 2.3.1 Phytochemical screening 42
 2.3.2 Antioxidant screening of *Ocimum* sp. 43
 2.2.3 Effect of *Ocimum* species on physical performance 46
 2.2.3.1 Effect of *Ocimum* species on swimming time 46
2.3.3.2 Effect of *Ocimum* species on glycogen levels 47
2.3.3.3 Effect of *Ocimum* species on lactic acid levels 49
2.3.3.4 Effect of *Ocimum* species on lipid peroxidation 50
2.3.3.5 Effect of *Ocimum* species on antioxidant enzyme levels 52
2.3.3.6 Effects of *Ocimum* species on blood biochemical parameters 53

2.3.4 Effect of *O. sanctum* extract on cell viability 55
2.3.4.1. Effect of *O. sanctum* on sirt-1, p-Ampk expression 55

Chapter-3

Evaluation of anti-fatigue property of the most potent species at different temperatures

3.1 Introduction 57
3.2 Materials and methods 60
 3.2.1. Preparation of plant extract 60
 3.2.2 RP-HPLC analysis of polyphenols 60
 3.2.3 LC-ESI-MS/MS analysis 61
 3.2.4 Animal grouping 62
 3.2.4.1 Weight loaded forced swimming test (WFST) 63
 3.2.4.2 Estimation of tissue glycogen levels 63
 3.2.4.3 Estimation of tissue lactic acid levels 63
 3.2.4.4 Estimation of lipid peroxidation in tissue 63
 3.2.4.5 Serum biochemical parameters 64
 3.2.4.6 Antioxidant assays 64
 3.2.4.7 Estimation of ATP content 64
3.3 Results and Discussions 64
 3.3.1 Polyphenol estimation by HPLC 64
 3.3.2.1 LC-ESI-MS/MS analysis of *O. sanctum* 66
 3.3.2.2 LC-ESI-MS/MS analysis of *O. gratissimum* 66
 3.3.3 Performance enhancement of *Ocimum* species under heat stress 72
 3.3.3.1 Effect on swimming time 72
 3.3.3.2 Effect of *Ocimum* species on glycogen levels after swimming under heat stress 73
3.3.3.3 Effect of *Ocimum* species on lactic acid levels after swimming under heat stress 75
3.3.3.4 Effect of *Ocimum* species on lipid peroxidation after swimming under heat stress 76
3.3.3.5 Effect of *Ocimum* species on antioxidant enzymes after heat stress induced swim test 77
3.3.3.6 Effect of *Ocimum* species on ATP levels after swimming under heat stress 78
3.3.4 Effect of *Ocimum* species on serum biochemicals after swimming test under heat stress 80
3.3.4 Performance enhancement of *Ocimum* species on swimming under cold stress 81
3.3.4.2 Effect of *Ocimum* species on glycogen levels on swimming under cold stress 82
3.3.4.3 Effect of *Ocimum* species on lactic acid levels on swimming under cold stress 83
3.3.4.4 Effect of *Ocimum* species on lipid peroxidation on swimming under cold stress 85
3.3.4.5 Effect of *Ocimum* species on antioxidant enzymes after swimming under cold stress 86
3.3.4.6 Effect of *Ocimum* species on ATP levels after swimming under cold stress 87
3.3.4.7 Effect of *Ocimum* species on serum biochemical parameters after swimming under cold stress 88

Chapter-4

Anti-stress and neuroprotective activity of *Ocimum sanctum* in smoke induced stress

4.1 Introduction 90
4.2 Materials and Methods 93
4.2.1 Preparation of *O. sanctum* extract 93
4.2.2 Smoke induced stress on animal studies 94
4.2.2.1 Animal grouping 94
4.2.2.2 Smoke exposure 95
4.2.2.3 HT TOF MS analysis of cracker tablets 95
4.2.2.4 Determination of blood and serum markers 96
4.2.2.5 Estimation of lung and brain antioxidant enzymes 96
4.2.2.6 Estimation of lipid peroxidation in lung and brain tissues 96
4.2.2.7 Estimation of GSH content in lung and brain 96
4.2.2.8 Estimation of nitrite content in brain 96
4.2.2.9 Estimation of neurotransmitter levels in brain 97
4.2.2.10 Estimation of Acetylcholine esterase activity 97
4.2.2.11 Histopathology of lung and brain 97
4.2.2.12 Transmission electron microscopy 98
4.2.2.13 Immunoblotting 98
4.2.2.14 Pharmacokinetics of O. sanctum 99

4.2.3 Oxidative stress on SH-SY5Y cell line 100
4.2.3.1 Cell culture and treatments 100
4.2.3.2 Analysis of cell viability 100
4.2.3.3 Lactate dehydrogenase (LDH) release assay 100
4.2.3.4 Observations of morphological changes 101
4.2.3.5 Estimation of SOD and CAT 101
4.2.3.6 Estimation of lipid peroxidation 102
4.2.3.7 Estimation of intracellular ROS 102
4.2.3.8 Measurement of mitochondrial membrane potential (MMP) 102
4.2.3.9 Single cell gel electrophoresis (SCGE) assay 103
4.2.3.10 Immunoblotting 104
4.2.3.11 Statistical Analysis 104

4.3 Results and Discussions 105

4.3.1 Chemical composition of smoke tablet 105
4.3.2.1 Effect of O. sanctum on blood and serum biochemical markers 107
4.3.2.2 Effect of O. sanctum on antioxidant enzymes 108
4.3.2.3 Effect of O. sanctum on lipid peroxidation 109
4.3.2.4 Effect of O. sanctum on neurotransmitters, acetylcholine esterase activity and nitrite content in brain 110
4.3.2.5 Effect of O. sanctum on tissue histopathology 112
4.3.2.6 Effect of O. sanctum on expression of stress related genes 116
Chapter 4

4.3.2.7 Pharmacokinetics *O. sanctum* in Wistar rats

4.3.3 Cell culture studies

4.3.3.1 Protective effect of *Ocimum sanctum* extract (OSE) against
H$_2$O$_2$ induced cytotoxicity

4.3.3.1 Protective effect of *Ocimum sanctum* extract against
plasma membrane damage

4.3.3.2 Effect of OSE on antioxidant enzymes

4.3.3.3 Inhibitory effect of OSE on H$_2$O$_2$ induced ROS generation

4.3.3.4 Inhibitory effect of OSE on H$_2$O$_2$ induced Lipid peroxidation

4.3.3.5 Effect of OSE on H$_2$O$_2$ induced inhibition of MMP

4.3.3.6 Protective effect of OSE on H$_2$O$_2$ induced DNA Damage

4.3.3.7 Protective effect of OSE on H$_2$O$_2$ induced expression of SOD,
CAT and HSP-70

Chapter 5

Development of an anti fatigue bar and evaluation of its physicochemical,
microbiological, sensory and functional quality characteristics

5.1 Introduction:

5.2 Materials and Methods:

5.2.1 Preparation of *O. sanctum* extract

5.2.2 Preparation of *Ocimum sanctum* enriched bar:

5.2.3 Moisture Estimation (Vacuum Oven Method)

5.2.4 Total calories

5.2.5 Estimation of Protein

5.2.6 Determination of fat content

5.2.7 Texture analysis:

5.2.8 Colour measurement:

5.2.9 Water activity:

5.2.10 Determination of malonaldehyde content

5.2.11 Total Ash

5.2.12 Free fatty acid content (FFA)

5.2.13 Peroxide Value (PV)

5.2.14 Determination of metals in food bar by inductively coupled
plasma optical emission Spectrometry (ICPOES):
5.2.15 Microbial analysis: 138
5.2.16 Sensory evaluation overall acceptability: 139
5.2.3 Effect of *Ocimum sanctum* enriched bar in animals: 139
 5.2.3.1 Animal grouping 139
 5.2.3.2 Weight loaded forced swimming test (WFST) 140
 5.2.3.3 Estimation of tissue glycogen levels 140
 5.2.3.4 Estimation of tissue lactic acid levels 140
 5.2.3.5 Estimation of lipid peroxidation in brain and muscle tissues 140
 5.2.3.6 Estimation of brain and liver antioxidant enzymes 140
5.3 Results and discussion 141
 5.3.1 Proximate composition of *Ocimum sanctum* enriched bar 141
 5.3.2 Sensory evaluation of *Ocimum sanctum* enriched bar 142
 5.3.3 Effect of oxidative and hydrolytic rancidity on *Ocimum sanctum* enriched bar 143
 5.3.4 Changes in peroxide value (PV) 143
 5.3.5 Water activity of *Ocimum sanctum* enriched bar 146
 5.3.6 Textural analysis of *Ocimum sanctum* enriched bar 146
 5.3.7 Color estimation of *Ocimum sanctum* enriched bar 147
 5.3.8 Microbiological profile of *Ocimum sanctum* enriched bar 149
 5.3.9 Elemental analysis of *Ocimum* enriched food bar 149
 5.3.10 Anti fatigue effect of *Ocimum sanctum* enriched bar in animal models 150

Chapter-6

Evaluation of *Ocimum sanctum* enriched bars on physical performance in human volunteer

6.1 Introduction 156
6.2 Materials and Methods: 156
 6.2.1 Preparation of food bar 157
 6.2.2 Study design 157
 6.2.3 Recruitment of volunteers 157
 6.2.4 Allocation of volunteers 157
 6.2.5 Dosage and route of administration 158
6.2.6 Bruce test protocol 159
6.2.7 Fatigue Severity Scale (FSS) 159
6.2.8 Blood and saliva sampling 160
6.2.9 Serum biochemical parameters 161
6.2.10 Detection of Human herpes virus HHV-6 from saliva samples: 161

6.3 Results and discussion 162
6.3.1 Effect of *Ocimum* enriched bar on performance in human volunteers (Bruce test) 162
6.3.2 Effect of *Ocimum sanctum* enriched bar on Fatigue Severity Scale 163
6.3.3 Effect of *Ocimum* enriched bar on Serum biochemical parameters 164
6.3.4 Effect of *Ocimum* enriched bar on Human herpes virus -type 6 (HHV-6) 167

Chapter-7

Summary and Conclusion 169

References 172

List of Publications