Chapter 5

Comparison between Majorana Representation and Multiaxial Representation

5.1 Introduction

In this chapter, we study a comparison between MR and MAR for the N-qubit GHZ state to bring out the differences and similarities between the two representations. Depending on whether N is odd or even we have different axes and classification for both representations in the case of N-qubit GHZ state. We show that pure state classification based on MR is not a special case of our classification scheme based on MAR.

5.2 MR of GHZ State

Consider symmetric N-qubit GHZ state

$$|\psi_{\text{GHZ}}\rangle = \frac{1}{\sqrt{2}} \left[|\uparrow \cdots \uparrow_N \rangle + |\downarrow \cdots \downarrow_N \rangle \right] \equiv \frac{1}{\sqrt{2}} \left[|jj\rangle + |j-j\rangle \right].$$

(5.1)

The MR polynomial equations (2.9) and (2.11), takes the form,

$$(-1)^{2j} Z^{2j} + 1 = 0$$

(5.2)

Depending on whether N is odd or even we have the following solutions:

5.2.1 Odd N(Half odd integral j)

In this case $Z^{2j} = +1$ or

$$Z = e^{\frac{2\pi i r}{2j}}; \quad r = 0, 1, 2, \ldots, 2j - 1.$$
Thus the $2j$ distinct spinors characterizing N-qubit GHZ state are

$$\left(\frac{\pi}{2},0\right),\left(\frac{\pi}{2},\frac{2\pi}{2j}\right),\left(\frac{\pi}{2},\frac{4\pi}{2j}\right),...\left(\frac{\pi}{2},\frac{2(2j-1)\pi}{2j}\right). \tag{5.4}$$

5.2.2 Even N(integral j)

In this case $Z^{2j} = +1$ or

$$Z = e^{\frac{2\pi i}{2j}(r-\frac{1}{2})}, \quad r = 0, 1, 2, ..., 2j - 1. \tag{5.5}$$

Thus we have $2j$ distinct spinors namely

$$\left(\frac{\pi}{2},\frac{\pi}{2j}\right),\left(\frac{\pi}{2},\frac{3\pi}{2j}\right),\left(\frac{\pi}{2},\frac{5\pi}{2j}\right),...\left(\frac{\pi}{2},\frac{(4j-1)\pi}{2j}\right) \tag{5.6}$$

or equivalently j distinct axes.

According to Bastin et al. (2009), N-qubit GHZ state belong to $D_{1,1,1...1}^{N}$ or equivalently $D_{2j}^{2j,1,1...1}$ for both odd and even N's.

5.3 MAR of GHZ State

To find out the axes, consider the density matrix of N-qubit GHZ state in the $|jm\rangle$ basis; $m = +j...-j$

$$\rho_{GHZ} = \frac{1}{2} \begin{pmatrix} 1 & 0 & \ldots & 1 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \ldots & 1 \end{pmatrix}. \tag{5.7}$$

$$t^{k}_{q} = \sum_{m=-j}^{+j} \rho_{mm'} [k] C(jk;jmqm'), \quad \text{with} \quad m' = m + q. \tag{5.8}$$

Since $\rho_{jj} = \rho_{j-j} = \rho_{-jj} = \rho_{-j-j} = \frac{1}{2}$ are the only non-zero matrix elements of ρ_{GHZ}, the t^{k}_{q}'s can be computed as,

$$t^{k}_{q} = 0, \quad \text{for all} \quad q \neq 0, 2j. \tag{5.9}$$
Further,

\[t_k^0 = \rho_{jj}[^k]C(jkj; j0j) + \rho_{-jj}[^k]C(jkj; -j0 - j) = 0 \quad \text{for odd } k's. \] (5.10)

Here we have used the symmetry property of Clebsch-Gordan coefficients namely

\[C(jkj; j0j) = (-1)^k C(jkj; -j0 - j). \]

Also

\[t_k^0 = \frac{[k]}{2} (2j)! \left[\frac{2j + 1}{(2j - k)! (2j + k + 1)!} \right]^{1/2}, \quad \text{for even } k's \] (5.11)

since

\[C(abc; c0c) = (2c)! \left[\frac{(2c + 1)}{(2c - b)! (2c + b + 1)!} \right]^{1/2} \]

(eq. (42) in page 252 of Varshalovich (1988)).

To write the polynomial equation for MAR, we compute \[t_{2j}^{2j} \] as

\[t_{2j}^{2j} = (-1)^{2j} t_{-2j}^{2j} = (-1)^{2j} \rho_{-jj} [2j] C(j2jj; j - 2j - j) \]

\[= (-1)^{2j} \frac{[2j]}{2} \left[\frac{(2j + 1)(4j)!}{(4j + 1)!} \right]^{1/2}. \] (5.12)

Here we have used the expression

\[C(abc; a\beta\gamma) = \delta_{\gamma-\beta,a} \left[\frac{(2c + 1)(2a)!(-a + b + c)!(b - \beta)!(c + \gamma)!}{(a + b + c + 1)!(a - b + c)!(a + b - c)!(b + \beta)!(c - \gamma)!} \right]^{1/2} \]

(eq. (36) in page 251 of Varshalovich (1988)).

As in the case of MR, here also we take up the case of odd \(N \) and even \(N \) separately.

5.3.1 Odd \(N \) (half odd integral \(j \))

Since \(t_k^0 = 0 \) for odd \(k's \) and \(t_k^0 \neq 0 \) for even \(k's \), there exist \(k \) axes collinear to \(z \)-axis as explained in sec. 3.2 for every even \(k \) \((k = 2, 4, 6 \ldots 2j - 1)\). Thus, the total number of axes collinear to \(z \)-axis, characterizing the odd \(N \)-qubit GHZ state is,

\[2 + 4 + 6 + \ldots + 2j - 1 = j^2 - \frac{1}{4}. \] (5.13)
Further, for the highest value of \(k \),

\[
P(Z) = \sqrt{\frac{4j}{C_{2j}}} t^{2j}_{2j} Z^0 + \sqrt{\frac{4j}{C_{0}}} t^{2j}_{-2j} Z^{4j} = 0,
\]

(5.14)

since \(t^{2j}_{2j} = -t^{2j}_{-2j} \), we have

\[
P(Z) = Z^{4j} - 1 = 0,
\]

(5.15)

\[
Z = e^{\frac{2\pi i r}{2j}}, \quad r = 0, 1 \ldots 4j - 1.
\]

(5.16)

There exist \(4j \) solutions or \(2j \) axes namely

\[
\left(\frac{\pi}{2}, 0 \right), \left(\frac{\pi}{2}, \frac{\pi}{2j} \right), \left(\frac{\pi}{2}, \frac{2\pi}{2j} \right) \ldots \left(\frac{\pi}{2}, \frac{4j - 1)\pi}{2j} \right).
\]

(5.17)

Therefore, the degeneracy configuration of the statistical tensor parameters are given by

\[
t^2 \in D^2_{2j}, \quad t^4 \in D^4_{4}, \ldots, t^{2j-1} \in D^{2j-1}_{2j-1}, \quad t^{2j} \in D^{2j}_{1,1,1\ldots 1_{2j}}
\]

(5.18)

Thus according to our classification, the degeneracy configuration of \(N \)-qubit GHZ state for odd \(N \) is

\[
\{D^2_{2j}, D^4_{4}, \ldots, D^{2j-1}_{2j-1}, D^{2j}_{1,1,1\ldots 1_{2j}}\}.
\]

5.3.2 Even \(N \) (integral \(j \))

Since \(t^k_0 \neq 0 \) for \(k = 2, 4, 6, \ldots, 2j - 2 \), there exist \(k \) axes collinear to \(z \)-axis. Thus, in this case the total number of axes collinear to the \(z \)-axis is,

\[
2 + 4 + 6 + \ldots + 2j - 2 = j(j - 1)
\]

(5.19)

The polynomial equation for the highest \(k \) is,

\[
P(Z) = \sqrt{\frac{4j}{C_{2j}}} t^0_0 Z^{2j} + \sqrt{\frac{4j}{C_{4j}}} t^{2j}_{2j} Z^0 + \sqrt{\frac{4j}{C_{0}}} t^{2j}_{-2j} Z^{4j} = 0.
\]

(5.20)
Since in this case $t_{2j}^2 = t_{-2j}^2$, we have

$$P(Z) = \sqrt{\frac{2j}{C_{2j}}} t_{0}^{2j} Z^{2j} + t_{2j}^{2j} (Z^{4j} + 1) = 0. \tag{5.21}$$

Substituting t_{0}^{2j} and t_{2j}^{2j} from (Eq. 5.11) and (Eq. 5.12) respectively,

$$P(Z) = [\frac{(4j)!}{(2j)!(2j)!}]^{1/2} 2 (2j)! [\frac{2j + 1}{(4j + 1)!}]^{1/2} Z^{2j} + \left[\frac{(4j)! (2j + 1)}{(4j + 1)!}\right]^{1/2} (Z^{4j} + 1) = 0 \tag{5.22}$$

which leads to

$$P(z) = Z^{4j} + 2Z^{2j} + 1 = 0. \tag{5.23}$$

Thus

$$(Z^{2j} + 1)^2 = 0,$$

$$Z = e^{\frac{2\pi i}{2j}(r - \frac{1}{2})}, \quad r = 0, 1, ..., 2j - 1 \tag{5.24}$$

There exist two identical sets of solutions or j axes namely

$$\left(\frac{\pi}{2}, \frac{\pi}{2j}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2j}\right), \left(\frac{\pi}{2}, \frac{5\pi}{2j}\right)... \left(\frac{\pi}{2}, \frac{(4j - 1)\pi}{2j}\right). \tag{5.25}$$

Therefore, the degeneracy configuration of the statistical tensor parameters are given by

$$t^2 \in D^2_2, \quad t^4 \in D^4_4 \quad t^{2j-2} \in D^{2j-2}_{2j-2}, \quad t^{2j} \in D^{2j}_{2, 2, \ldots, 2} \tag{5.26}$$

Thus according to our classification the degeneracy configuration of N-qubit GHZ state for even N is

$$\{D^2_2, D^4_4, D^6_6, ..., \underbrace{D^{2j-2}_{2j-2}}_y, \underbrace{D^{2j}_{2, 2, \ldots, 2}}_y\}$$

Let us now consider The MR and MAR of the 3-qubit and 4-qubit GHZ states.
5.4 Some examples

MR of 3-qubit GHZ state:

Consider

\[|\psi_{\text{GHZ}}\rangle = \frac{|\frac{3}{2}, \frac{3}{2}\rangle + |\frac{3}{2}, -\frac{3}{2}\rangle}{\sqrt{2}} = \frac{|\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\rangle}{\sqrt{2}}. \]

Since \(N \) is odd, according to (Eq. 5.2), the polynomial equation is given by \(Z^3 = 1 \) and the three distinct spinors are,

\[\left(\frac{\pi}{2}, 0 \right), \left(\frac{\pi}{2}, \frac{2\pi}{3} \right), \left(\frac{\pi}{2}, \frac{4\pi}{3} \right). \] \hspace{1cm} (5.27)

Thus,

\[|\psi_{\text{GHZ}}\rangle \in D_{1,1,1}^3. \]

Spinors characterizing the MR of the 3-qubit GHZ state are shown in figure 5.1.
Figure 5.1: MR of the 3-qubit GHZ state.

Chapter 5. Comparison between Majorana Representation and Multiaxial Representation
Chapter 5. Comparison between Majorana Representation and Multiaxial Representation

MAR of 3-qubit GHZ state:

Corresponding density matrix for 3-qubit GHZ state is

\[
\rho_{GHZ} = \frac{1}{2} \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
\end{pmatrix}.
\] \hspace{1cm} (5.28)

The non-zero \(t^k_q\)'s from (Eq. 1.11) are:

\[
t_0^2 = \rho_{\pi/2} \sqrt{5} C(\frac{2}{2}; \frac{3}{2}, \frac{3}{2}; \frac{0}{2}, \frac{-3}{2}, \frac{-3}{2}) + \rho_{-\pi/2} \sqrt{5} C(\frac{2}{2}; \frac{-3}{2}, \frac{-3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}) = 1 \] \hspace{1cm} (5.29)

\[
t_3^3 = \rho_{\pi/2} \sqrt{7} C(\frac{2}{3}; \frac{3}{2}, \frac{3}{2}, \frac{-3}{2}, \frac{-3}{2}, \frac{3}{2}) = -1 \] \hspace{1cm} (5.30)

\[
t_{-3}^3 = \rho_{\pi/2} \sqrt{7} C(\frac{2}{3}; \frac{-3}{2}, \frac{-3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{-3}{2}) = 1. \] \hspace{1cm} (5.31)

Solving the polynomial equation for \(t_q^3\); \(q = 3, -3\) (Eq. 5.14), we have

\[
Z = e^{2\pi i r}, \quad r = 0, 1, ..., 5
\] \hspace{1cm} (5.32)

Thus, the three distinct axes are:

\[
\{(\frac{\pi}{2}, 0), (\frac{\pi}{2}, \pi)\}, \{(\frac{\pi}{2}, \frac{\pi}{3}), (\frac{\pi}{2}, \frac{4\pi}{3})\}, \{(\frac{\pi}{2}, \frac{2\pi}{3}), (\frac{\pi}{2}, \frac{5\pi}{3})\}.
\] \hspace{1cm} (5.33)

Also, since \(t_0^2 = 1\), there exist two axes collinear to \(z\)-axis.

Therefore, \(t^2 \in \mathcal{D}_2\), \(t^3 \in \mathcal{D}_{1,1,1}\) and \(\rho \in \{\mathcal{D}_2, \mathcal{D}_{1,1,1}\}\).

Axes characterizing MAR of 3-qubit GHZ state are shown in figure 5.2
Figure 5.2: MAR of t^2 and t^3 characterizing the 3-qubit GHZ state.
Chapter 5. Comparison between Majorana Representation and Multiaxial Representation

MR of 4-qubit GHZ state:

Corresponding 4-qubit GHZ state in $|2m\rangle$ representation is, $|\psi_{GHZ}\rangle = |2,2\rangle + |2,-2\rangle$. Since N is even, the polynomial equation is given by $Z^4 = 1$ which leads to

$$Z = e^{\frac{2\pi i}{4}(r-\frac{1}{2})}, \quad r = 0, 1, 2, 3 \quad (5.34)$$

We get four distinct spinors or equivalently two distinct axes

$$\left(\frac{\pi}{2}, \frac{\pi}{4}\right), \left(\frac{\pi}{2}, \frac{3\pi}{4}\right), \left(\frac{\pi}{2}, \frac{5\pi}{4}\right), \left(\frac{\pi}{2}, \frac{7\pi}{4}\right) \quad (5.35)$$

Thus,

$$|\psi_{GHZ}\rangle \in D_{1,1,1,1}^4.$$

Spinors characterizing MR of 4-qubit GHZ state are shown in figure 5.3.
Figure 5.3: MR of the 4-qubit GHZ state.
Chapter 5. Comparison between Majorana Representation and Multiaxial Representation

MAR of 4-qubit GHZ state:

Corresponding density matrix for 4-qubit GHZ state is

$$\rho_{GHZ} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$ \hspace{1cm} (5.36)

The only non-zero t^k_q's are:

$$t^2_0 = \sqrt{10}, \quad t^4_0 = \frac{1}{\sqrt{14}}, \quad t^4_4 = \frac{\sqrt{5}}{2}, \quad t^4_{-4} = \frac{\sqrt{5}}{2}. \hspace{1cm} (5.37)$$

Since N is even, solving the polynomial equation for $t^k_q; q = 0, 4, -4$ we get

$$Z = e^{\frac{2\pi i}{4} (r - \frac{1}{2})}, \quad r = 0, 1, 2, 3 \hspace{1cm} (5.38)$$

Thus we get two sets of two distinct axes and the axes are given by

$$\left\{ \left(\frac{\pi}{2}, \frac{\pi}{4} \right), \left(\frac{\pi}{2}, \frac{3\pi}{4} \right) \right\}, \left\{ \left(\frac{\pi}{2}, \frac{5\pi}{4} \right), \left(\frac{\pi}{2}, \frac{7\pi}{4} \right) \right\}. \hspace{1cm} (5.39)$$

In this case $t^2 \in D^2_2$ and $t^4 \in D^4_{2,2}$, thus

$$\rho \in \{D^2_2, D^4_{2,2} \}.$$

Axes characterizing MAR of 4-qubit GHZ state are shown in figure 5.4.
Figure 5.4: MAR of t^2 and t^4 characterizing the 4-qubit GHZ state.
Thus it is evident that MR is not a special case of MAR. One can also note that the basic entity characterizing MR is a spinor and MAR is an axis.