Chapter 2

Majorana Representation (MR) and classification of Symmetric Pure States

2.1 Introduction

A way of representing the pure states in terms of symmetric states of $2j = N$ spin-$1/2$ particles was introduced by Majorana (1932). This representation, known as the Majorana Representation (MR), makes it possible to express spin-j states geometrically as $2j$ points on the Bloch sphere.

A pure spin $j = \frac{N}{2}$ quantum state can be represented as a symmetrized combination of N constituent spinors [Usha Devi (2012)], i.e.,

$$|\psi_{\text{sym}}\rangle = \mathcal{N} \sum_{\hat{P}} \hat{P} |\epsilon_1, \epsilon_2, \ldots, \epsilon_N\rangle$$ \hspace{1cm} (2.1)

where

$$\epsilon_r = \cos\left(\frac{\beta_r}{2}\right)|0\rangle + \sin\left(\frac{\beta_r}{2}\right)e^{+i\alpha_r}|1\rangle,$$

and $r = 0, 1, \ldots, N$ denote the spinors constituting the symmetric state $|\psi_{\text{sym}}\rangle$; \hat{P} corresponds to the set of all $N!$ permutations of the spinors and \mathcal{N} corresponds to an overall normalization factor.

Majorana’s geometric realization of a spin-j state has been used extensively in diverse branches of physics [Bloch & Rabi (1945); Dennis (2004); Zimba (2006)] and in quantum information science [Aulbach et al. (2010a); Bastin et al. (2009, 2010); Markham (2011); Martin et al. (2010); Usha Devi et al. (2010)] particularly. It has been used to study the quantumness of pure quantum states in some aspects [Giraud et al. (2010); Zimba (2006)] as
well as to characterize the entanglement of permutationally symmetric states under SLOCC [Bastin et al. (2009); Markham (2011); Mathonet et al. (2010)].

Two states which are SLOCC equivalent can be used to perfume the same quantum computational tasks [Dur et al. (2000)]. For any two N-partite states $|\psi\rangle$ and $|\psi'\rangle$, it is well known from [Dur et al. (2000)] that $|\psi\rangle$ is equivalent to $|\psi'\rangle$ under SLOCC if and only if

$$|\psi\rangle = A_1 \otimes A_2 \otimes \ldots \otimes A_N |\psi'\rangle$$

(2.2)

where $A_1 \otimes A_2 \otimes \ldots \otimes A_N$ are Invertible Local Operators (ILO). When two states $|\psi\rangle$ and $|\psi'\rangle$ are symmetric with respect to the permutations of the parties, it is sufficient to look for a symmetric ILO. i.e;

$$|\psi_{sym}\rangle = A \otimes A \otimes \ldots \otimes A |\psi'_{sym}\rangle$$

(2.3)

where the same ILO acts on each qubit.

Bastin et al. (2009) made use of MR for classification of symmetric N-qubit pure states into SLOCC inequivalent classes. The classification is based on the parameters namely, degeneracy number and degeneracy configuration [Bastin et al. (2009)]. In other words, two symmetric states $|\psi_{sym}\rangle = \mathcal{N} \sum_p \hat{P} |\epsilon_{i_1}, \epsilon_{i_2}, \ldots \epsilon_{i_N}\rangle$ and $|\psi'_{sym}\rangle = \mathcal{N} \sum_p \hat{P} |\epsilon'_{i_1}, \epsilon'_{i_2}, \ldots \epsilon'_{i_N}\rangle$ ($i = 1, 2, \ldots N$) belong to the same SLOCC class if and only if there exists a single ILO, A which converts each of the spinors $|\epsilon_i\rangle$ to $|\epsilon'_i\rangle$. Here we briefly study SLOCC classification of Bastin et al. (2009). As examples we consider some well known two and three qubit symmetric states.

2.2 Majorana representation of symmetric pure states

We now study MR of the most general symmetric N-qubit pure states $|\psi_{sym}^N\rangle$ or spin-j pure state $|\psi^j\rangle$ given by

$$|\psi^j\rangle = \sum_{m=-j}^{+j} a_m |jm\rangle$$

(2.4)
using the algebra of Wigner D-matrices. Let us consider a rotation $R(\phi, \theta, 0)$ of the frame of reference such that the expansion coefficient a_{-j} in the rotated frame vanishes i.e;

$$(a_{-j})^R = 0 = \langle j - j | R^{-1}(\phi, \theta, 0) | \psi_j \rangle = \sum_m a_m (j - j | R^{-1}(\phi, \theta, 0) | jm)$$

$$= \sum_m a_m D^*_{m-j}(\phi, \theta, 0) = \sum_m a_m (-1)^{(j+m)} D^j_{-m,j}(\phi, \theta, 0), \quad (2.5)$$

where $D^j_{m', m}(\phi, \theta, 0)$ are the matrix elements of Wigner rotation matrices, given by [Rose (1957)]

$$D^j_{m', m}(\alpha \beta \gamma) = e^{-im'\alpha} e^{-im\gamma} \sum_s (-1)^s \sqrt{(j + m)! (j - m)! (j + m')! (j - m')!}$$

$$\times \left(\cos \frac{\beta}{2} \right)^{2j + m - m' - 2s} (-1)^{m' - m + 2s} \left(\sin \frac{\beta}{2} \right)^{m' + m - 2s}. \quad (2.6)$$

Thus

$$D^j_{-m,j}(\phi, \theta, 0) = e^{im\phi} (-1)^j m \sqrt{2j \binom{2j}{j+m}} \left(\cos \frac{\theta}{2} \right)^{j-m} (-1)^j m \left(\sin \frac{\theta}{2} \right)^{j+m}, \quad (2.7)$$

where $s = j + m$ and $2j \binom{2j}{j+m}$ is the Binomial Coefficient. (Eq. 2.7) becomes

$$\mathcal{A} \sum_{m=-j}^{+j} (-1)^j \sqrt{2j \binom{2j}{j+m}} a_m Z^{j+m} = 0 \quad (2.8)$$

where

$$Z = \tan \left(\frac{\theta}{2} \right) e^{i\phi}$$

and the overall coefficient

$$\mathcal{A} = \cos^{2j} \left(\frac{\theta}{2} \right) e^{-i\phi j}.$$

The Majorana polynomial $P(z)$ is given by

$$P(Z) = \sum_{m=-j}^{+j} (-1)^j \sqrt{2j \binom{2j}{j+m}} a_m Z^{j+m} = 0, \quad (2.9)$$

11
for $\theta \neq \pi$.

Equivalently, from (Eq. 2.7) we can also have

$$A' \sum_{m=-j}^{+j} (-1)^{j+m} \sqrt{2j} C_{j+m} a_m Z'^{-m} = 0$$

(2.10)

where

$$A' = \sin^{2j} \left(\frac{\theta}{2} \right) e^{i\phi j}$$

and

$$Z' = \frac{1}{Z} = \cot \left(\frac{\theta}{2} \right) e^{-i\phi}.$$

We thus obtain,

$$P(Z') = \sum_{m=-j}^{+j} (-1)^{j-m} \sqrt{2j} C_{j+m} a_m Z'^{-m} = 0$$

(2.11)

for $\theta \neq 0$.

Solving either of the polynomial equations, one gets $2j$ solutions namely

$$\{ (\theta_1, \phi_1), (\theta_2, \phi_2), \ldots, (\theta_{2j}, \phi_{2j}) \}$$

in general. Thus every pure spin-j state $|\psi^j\rangle$ or the corresponding symmetric state $|\psi^j_{sym}\rangle$ can be represented by a constellation of $2j$ points on the Bloch sphere or

$$|\psi^N_{sym}\rangle = \mathcal{N} \sum_{\hat{P}} \hat{P}(\epsilon_1, \epsilon_2, \ldots, \epsilon_{2j}),$$

(2.12)

where

$$|\epsilon_k\rangle = \cos(\theta_k/2)e^{-i\phi_k/2}|0\rangle + \sin(\theta_k/2)e^{i\phi_k/2}|1\rangle, \quad k = 0, 1, \ldots, 2j$$

(2.13)

refer to the N spinors constituting the symmetric state $|\psi^N_{sym}\rangle$; \hat{P} corresponds to the set of $(2j)!$ permutations of the spinors and \mathcal{N} corresponds to an overall normalization factor.
2.3 Classification of symmetric Pure States based on Majorana representation

Entanglement classification of qubits based on LU [Kraus (2010a); Kraus (2010b)], SLOCC [Aulbach (2010c); Kolenderski (2010); Markham (2011); Mathonet et al. (2010)] and Local Operation and Classical Communication (LOCC) [Hayden et al. (2000)] has gained importance in recent times. The SLOCC classification of the permutationally symmetric N-qubit states makes use of the elegant, geometrical representation of the spin-j states given by Majorana. According to SLOCC classification of symmetric pure states by Bastin et al. (2009), the number of identical spinors $|\epsilon_i\rangle$ in (Eq. 2.12) is called the degeneracy number. Further, the degeneracy configuration $D_{\{n_i\}}$ of a symmetric state $|\psi_{\text{sym}}^N\rangle$ is defined such that $\{n_i\}$ is the set of degeneracy numbers ordered in decreasing order by convention. The number of n_i’s defines the diversity degree of the symmetric state. For example, if all the N spinors of a symmetric N-qubit pure state are identical, then

$$|\psi\rangle = \mathcal{N}|\epsilon\epsilon\epsilon\ldots\rangle$$

and the state is said to have the degeneracy configuration D_N and diversity degree $d = 1$. Thus

$$|\psi\rangle \in D_N$$

and the state belongs to separable class.

Similarly, if all except two spinors are identical, there are two cases.

(1) If the two remaining spinors are identical, then

$$|\psi\rangle = \mathcal{N} \sum_P \hat{P}|\epsilon'\epsilon'\epsilon\ldots\rangle$$

and the state has the degeneracy configuration of $D_{N-2,2}$ with $d = 2$. Thus

$$|\psi\rangle \in D_{N-2,2}.$$
Chapter 2. Majorana Representation and classification of Symmetric Pure States

(2) If the two remaining spinors are not identical, then

$$|\psi'\rangle = \mathcal{N} \sum_P \hat{P} |e'e''\epsilon...\rangle$$

and the state has the degeneracy configuration of $\mathcal{D}_{N-2,1,1}$ with $d = 3$. Thus

$$|\psi\rangle \in \mathcal{D}_{N-2,2}.$$

Therefore a separable symmetric N-qubit pure state has the degeneracy configuration of \mathcal{D}_N and $d = 1$.

2.3.1 Some examples

Bell State: Consider

$$|\psi_{Bell_1}\rangle = |10\rangle \equiv \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$$

which is a symmetric state.

Solving one of the polynomial equations (2.9) or (2.11) we get

$$Z = 0,$$

which shows that $\theta = 0$ and $\theta = \pi$. Thus $d = 2$ and $|\psi_{Bell_1}\rangle \in D_{1,1}$.

![Figure 2.1: MR of the Bell state $|\psi\rangle = \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$.](image)
Chapter 2. Majorana Representation and classification of Symmetric Pure States

Bell State: Consider

\[
|\psi_{\text{Bell}_2}\rangle = \frac{|11\rangle + |1 \iff 1\rangle}{\sqrt{2}} = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}.
\]

which is a symmetric state.

Solving the polynomial equation we get

\[Z^2 + 1 = 0.\]

Or

\[Z = e^{\pm i\pi/2}.\]

The corresponding axes are

\[(\pi/2, \pi/2), \ (\pi/2, 3\pi/2).\]

Thus \(d = 2\) and \(|\psi_{\text{Bell}_2}\rangle \in D_{1,1}\).

![Figure 2.2: MR of the Bell state \(|\psi\rangle = \frac{|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle}{\sqrt{2}}\).](image)
Bell State: Consider

\[|\psi_{\text{Bell}_3}\rangle = \frac{|11\rangle - |1 - 1\rangle}{\sqrt{2}} \equiv \frac{|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle}{\sqrt{2}}. \]

which is a symmetric state.

Solving the polynomial equation we get

\[Z^2 - 1 = 0, \]

which shows that the corresponding axes are

\(\left(\frac{\pi}{2}, 0 \right), \left(\frac{\pi}{2}, \pi \right). \)

Thus \(d = 2 \) and \(|\psi_{\text{Bell}_3}\rangle \in D_{1,1}. \)

Figure 2.3: MR of the Bell state \(|\psi\rangle = \frac{|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle}{\sqrt{2}}. \)
W State: Consider

\[|\psi_W\rangle = |3/2 - 1/2\rangle = \frac{|\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle}{\sqrt{3}}. \]

which is a symmetric state.

Solving the polynomial equation we get

\[Z_{1,2,3} = 0. \]

The corresponding axes are

\[\theta_1 = 0 \text{ and } \theta_{2,3} = \pi. \]

Thus \(d = 2 \) and \(|\psi_W\rangle \in \mathcal{D}_{2,1}. \)

Figure 2.4: MR of the W state \(|\psi\rangle = \frac{|\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle}{\sqrt{3}}. \)
GHZ State: Consider

\[|\psi_{GHZ}\rangle = \frac{\left|\frac{3}{2}, \frac{3}{2}\right\rangle + \left|\frac{3}{2}, -\frac{3}{2}\right\rangle}{\sqrt{2}} \equiv \frac{|\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\rangle}{\sqrt{2}}. \]

which is a symmetric state.

Solving the polynomial equation we get

\[Z^3 - 1 = 0. \]

Or

\[Z = e^{\frac{2\pi ir}{3}}, \quad r = 0, 1, 2, \]

which shows that the corresponding axes are

\[\left(\frac{\pi}{2}, 0\right), \left(\frac{\pi}{2}, \frac{2\pi}{3}\right), \left(\frac{\pi}{2}, \frac{4\pi}{3}\right). \]

Thus \(d = 3 \) and \(|\psi_{GHZ}\rangle \in D_{1,1,1} \).

Figure 2.5: MR of the GHZ state \(|\psi\rangle = \frac{|\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\rangle}{\sqrt{2}}. \)
Chapter 2. Majorana Representation and classification of Symmetric Pure States

Such a classification based on MR is valid for symmetric pure states only. Therefore we propose a novel scheme for the most general symmetric N-qubit pure as well as mixed states based on an equally elegant Multiaxial Representation (MAR) of the density matrix.