CONTENTS

Preface (i)

CHAPTER-1: Introduction 1
 1.1 Introduction to Digital System Design 1
 1.1.1 Digital Systems 1
 1.1.2 Design methodology 3
 1.1.3 An embedded system approach 4
 1.2 Programmable Logic Devices (PLDs) 5
 1.2.1 History of PLDs 5
 1.2.2 Programming PLDs 6
 1.3 Complex Programmable Logic Devices (CPLDs) 8
 1.4 Field Programmable Gate Arrays (FPGAs) 9
 1.4.1 Introduction 9
 1.4.2 What is FPGA? 9
 1.4.3 Historical roots of FPGAs 10
 1.4.4 Architecture of FPGA 11
 1.4.5 Device design characteristics 12
 1.4.6 FPGA design and programming 13
 1.4.7 Advantages of FPGAs 16
 1.5 Hardware Description Language 17
 1.5.1 History of VHDL 18
 1.5.2 Introduction to VHDL 19
 1.5.3 Types of Representation 20
 1.5.4 The Scope of VHDL 22
 1.6 Temperature Sensors 23
 1.6.1 Thermostat 24
 1.6.2 Thermistor 26
 1.6.3 Thermocouple 28
 1.6.4 Solid State Sensors 29
 1.6.5 Semiconductor/Integrated Circuit (IC) Sensors 30
 1.6.6 Resistance Temperature Detectors (RTD) 31
REFERENCES

CHAPTER-2: Literature review

2.1 Introduction

2.2 Literature review

REFERENCES

CHAPTER-3: Hardware and Software details of FPGA based Design

3.1 Introduction

3.2 Hardware Details

3.2.1 Resistance Temperature Detector - Pt100

3.2.2 Water bath with motorized stirrer

3.2.3 Signal Conditioning Circuit

3.2.4 Analog-to-Digital Converter

3.2.4.1 Features of AD574 ADC

3.2.4.2 ADC interface connection details

3.2.5 Electromechanical Relay Interfacing Circuit

3.2.5.1 Electromechanical Relay Contact Types

3.2.5.2 Relay Contact Configurations

3.2.5.3 Interfacing Electromechanical Relay with

Spartan-3 FPGA

3.2.6 Spartan-3 FPGA Details

3.2.7 FPGA Base Board

3.2.8 Daughter Board

3.2.9 XCF02 (Platform Flash PROM)

3.2.10 Downloading Tool

3.2.11 Download Cables

3.2.12 Joint Test Action Group (JTAG)

3.3 Software Features

3.4 Xilinx ISE9.1i (EDA Tool)