Chapter 4

\textbf{\textit{m-} Neighbourly Irregular Graphs}

For \(m \geq 1 \), \(m \)-Neighbourly Irregular graph and \(m \)-Neighbourly Irregular tree are defined in this chapter. It is shown that every graph of order \(n \geq 2 \) is an induced subgraph of \(m \)-Neighbourly Irregular graph, for \(m = 1, 2 \). Also, strict \(m \)-Neighbourly Irregular tree and \(m \)-Neighbourly Irregular strength of a graph are defined and a few properties possessed by 2-Neighbourly Irregular graph and 2-Neighbourly Irregular tree are studied. The 2-Neighbourly Irregular graph of order one to six are listed out. Also, a few results connecting 1-Neighbourly Irregular graph and 2-Neighbourly Irregular graph are proved.

4.1 Introduction

A graph \(G \) is regular if all its vertices have the same degree, otherwise it is irregular[1]. G.S.Bloom, J.K.Kennedy and L.V.Quintas, defined distance \textit{d-irregular} connected graph \(G \) with \(n \geq 2 \) vertices. A graph is distance \textit{d-irregular} if for every two distinct vertices \(u \) and \(v \) of \(G \), the number of vertices at a distance \(d \) from \(u \) is different from the number of vertices at a distance \(d \) from \(v \). But there is no \textit{d}-irregular graph [7].

Irregular graphs that are also connected have been defined and have been referred to as highly irregular graphs [1]. That is, a connected graph \(G \) is highly irregular if every vertex of \(G \) is adjacent only to vertices with distinct degrees. It was shown that for every graph \(H \) of order \(n \geq 2 \), there is a highly irregular graph
G containing H as an induced subgraph.

S.Gnana Prakasam and S.K.Ayyaswamy introduced the concept of Neighbourly Irregular graph in 2004. A connected graph G is said to be a *Neighbourly irregular graph (NI graph)* if no two adjacent vertices of G have the same degree [14].

A connected graph is *Neighbourhood Highly Irregular (NHI)* if each of its vertices adjacent to a vertex has distinct closed neighbourhoods [51]. Every graph of order \(n \geq 2 \) is an induced subgraph of a neighbourhood highly irregular graph of order \(2n - k \), where \(k \) is the number of pendant vertices of \(G \).

Inspired by these definitions, the \(m \)-Neighbourly Irregular graph and \(m \)-Neighbourly Irregular Tree (abbreviated as \(m \)-NI graph and \(m \)-NI tree) are defined and it is shown that every graph of order \(n \geq 2 \) is an induced subgraph of \(m \)-Neighbourly Irregular graph, for \(m = 1, 2 \).

4.2 \(m \)-Neighbourly Irregular Graphs (\(m \)-NI)

For \(m \geq 1 \), \(m \)-Neighbourly Irregular graph is defined and few examples of \(m \)-Neighbourly Irregular graph are presented in this section.

Definition 4.2.1. A connected graph \(G \) is said to be \(m \)-Neighbourly Irregular (\(m \)-NI) if no two adjacent vertices of \(G \) have the same number of vertices at a distance \(m \) away from them. Then, a connected graph \(G \) is \(m \)-Neighbourly Irregular \(d_m(u) \neq d_m(v) \), for all \(uv \) in \(E(G) \), where \(d_m(v) \) denotes the number of vertices at a distance \(m \) from \(v \) in \(G \) (\(m \), a positive integer).

Example 4.2.2. \(m \)-Neighbourly Irregular Graphs, for \(m = 1, 2 \)

1. Any complete bipartite graph \(K_{l,n} \) is \(m \)-Neighbourly Irregular graph only when \(l \neq n \).
2. \(P_3 \) is \(m \)-Neighbourly Irregular graph.
3. Any complete tripartite graph \(K_{l,n,p} \) is \(m \)-Neighbourly Irregular graph only when \(l \neq n \neq p \).
Example 4.2.3. Graphs shown in Figure 4.1 are m-Neighbourly Irregular for $m = 1, 2, 3$.

![Figure 4.1](image)

Example 4.2.4. Graphs given in figure 4.2 are 1-Neighbourly Irregular and 2-Neighbourly Irregular but not 3-Neighbourly Irregular.

![Figure 4.2](image)

The graphs given in figure 4.2 are obtained from star by joining two alternate pendant vertices to one new vertex are m-Neighbourly Irregular graphs for $m = 1, 2$. (vertices labeled by their d_2-degree)

Example 4.2.5. Herschel graph given in figure 4.3 is 2-Neighbourly Irregular graph, but it is not 1-neighbourly irregular and not 3-Neighbourly irregular. (vertices labeled by their d_2-degree)

![Figure 4.3](image)

Remark 4.2.6. Following four graphs are not m-Neighbourly Irregular for $m = 1, 2, 3$:

1. $K_{n_1, n_2, \ldots, n_m}$ with at least two n_i's are same.

2. Any path $P_n (n \neq 3)$.

3. Any cycle $C_n (n \geq 3)$.
4. All complete graphs.

5. Helm graph obtained from a wheel W_n by attaching a pendant edge at each vertex of the n-cycle is not m-Neighbourly Irregular for $m \geq 1$.

The vertices in the n-cycle are adjacent and they have the same d_m-degree, for $m \geq 1$. Hence helm graph is not m-Neighbourly Irregular graph, for $m \geq 1$ (vertices labeled by their d_2-degree).

Theorem 4.2.7. Any graph with diameter less than m is not m-Neighbourly Irregular graph.

4.3 1-Neighbourly Irregular Graphs (1-NI)

A method is suggested in this section to construct 1- Neighbourly Irregular graph containing the given graph as an induced subgraph. Also, minimum number of vertices needed to construct 1- Neighbourly irregular graph containing certain graphs are determined[43].

Definition 4.3.1. [14] A connected graph G is 1-Neighbourly Irregular (1-NI) if no two adjacent vertices of G have the same d_1-degree.

It is to be noted that Neighbourly Irregular graphs and 1-Neighbourly Irregular graphs are the same.

Example 4.3.2. 1-Neighbourly Irregular Graphs.
The following facts are known from literature

Fact 4.3.3. [14] The complete bipartite graph $K_{m,n}$ is Neighbourly Irregular if and only if $m \neq n$.

Fact 4.3.4. [14] If v is a vertex of maximum degree in a Neighbourly Irregular graph, then at least two of the adjacent vertices of v have the same degree.

Fact 4.3.5. [14] If a graph G is Neighbourly Irregular, then no P_4 contains internal vertices of the same degree in G.

Fact 4.3.6. [14] Any graph of order n can be made to be an induced subgraph of a NeighbourlyIrregular graph of order atmost $(n + 1)C_2$.

Fact 4.3.7. [14] It is seen that there exists a Neighbourly Irregular graph $K_{n_1, n_2, \ldots, n_m}$ of order n, for any +ve integer n and (n_1, n_2, \ldots, n_m) be a partition of n with distinct parts.

Fact 4.3.8. [14] Let G be an Neighbourly Irregular graph of order n. Then, for any positive integer $m < n$, there exists atmost m vertices of degree $n - m$.

4.4 1-Neighbourly Irregular Graphs Containing a Given Graph as an Induced Subgraph

König [20] proved that if G is any graph, whose maximum degree is r, then it is possible to add new vertices and to draw new edges joining either two new vertices or a new vertex to an existing point, so that the resulting graph H is a regular graph containing G as an induced subgraph.

Theorem 4.4.1. Every graph G is an induced subgraph of 1-Neighbourly irregular graph.

Proof. Let G be the given graph.

Case 1 If G is an r-regular graph, then 1-Neighbourly Irregular graph N containing the given graph G can be constructed
CHAPTER 4. \textit{m-NEIGHBOURLY IRREGULAR GRAPHS}

Case 2 If \(G \) is not a regular graph whose maximum degree is \(r \), then \(r \)-regular graph \(H \) whose degree of regularity is the maximum degree of a graph \(G \) can be constructed [20]. Let \(V(H) = \{ h_i : 1 \leq i \leq n \} \). The desired graph \(N_1 \) has the vertex set \(V(N_1) = V(H) \cup V(F) \cup V(T) \), where \(V(F) = \{ f_i : 1 \leq i \leq n - 1 \} \) and \(V(T) = \{ t_i : 1 \leq i \leq n + r - 1 \} \). Let \(E(N_1) = E(H) \cup \{ h_i f_j : 1 \leq i \leq n, 1 \leq j \leq i \} \cup \{ f_i t_j : 1 \leq i \leq n - 1, 1 \leq j \leq n + r - 1 \} \). It is to be noted that the degree of \(h_i \) in \(N_1 = r + i - 1 \), \(1 \leq i \leq n \) and the degree of \(f_i \) in \(N_1 = n + r + j - 1 \), \(1 \leq j \leq n - 1 \) and the degree of \(t_i \) in \(N_1 = n - 1 \), \(1 \leq i \leq n + r - 1 \). Then, the desired graph \(N_1 \) is the 1-Neighbourly Irregular graph of order \(3n + r - 2 \) containing every \(r \)-regular graph \(H \) of order \(n \) as an induced subgraph. Hence this graph \(N_1 \) is the 1-Neighbourly Irregular graph containing every graph \(G \) as an induced subgraph.

Example 4.4.2. Figure 4.6 illustrates Theorem 4.4.1 for the given graph \(G \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.6.png}
\caption{Figure 4.6}
\end{figure}

Theorem 4.4.3. For \(n \geq 1 \), the minimum order of 1-Neighbourly Irregular graph containing a regular complete bipartite graph \(K_{n,n} \) of order \(2n \) as an induced subgraph is \(2n + 1 \).

\textit{Proof.} By attaching one pendant edge to any vertex of \(K_{n,n} \) then the resulting graph is 1-Neighbourly Irregular graph of order \(2n + 1 \) containing \(K_{n,n} \).

Theorem 4.4.4. For any \(n \geq 3 \), every \(n \)-cycle is an induced subgraph of 1-Neighbourly Irregular graph.

\textit{Proof.} Let \(n \)-cycle be a given graph.

\textbf{Case (i)} \(n \) is even \((n \geq 4) \). By attaching one pendant edge to alternate vertices of \(n \)-cycle, the resulting graph is 1-Neighbourly Irregular graph of order \((3n)/2 \).

\textbf{Case (ii)} \(n \) is odd \((n \geq 3) \). Let \(C_n \) be an odd \(n \)-cycle. \(V(C_n) = \{ v_1, v_2, v_3, v_4, \ldots, v_n \} \).
By attaching two pendant edges to \(v_n \), and attaching one pendant edge to \(v_i \), \(i = 1, 3, 5, 7, \ldots, n - 2 \), the resulting graph is 1-Neighbourly Irregular graph of order \((3n + 3)/2\).

Example 4.4.5. Figure 4.7 illustrates Theorem 4.4.4 for \(n = 4, 6 \) and \(n = 5, 7 \).

![Figure 4.7](image)

Theorem 4.4.6. For any \(n \geq 3 \), every path \(P_n \) is an induced subgraph of 1-Neighbourly Irregular graph.

Proof. Let \(P_n \) be a given graph.

Case (i) \(n \) is odd. If \(n = 3 \), then the graph \(P_3 \) is 1-Neighbourly Irregular graph. Let \(P_n(n \geq 5) \) be a path of length \(n-1 \). \(V(P_n) = \{v_1, v_2, v_3, v_4, \ldots, v_n\} \). By attaching one pendant edge to \(v_i, i = 3, 5, 7, \ldots, n - 2 \), the resulting graph is 1-Neighbourly Irregular graph of order \(3(n-1)/2 \).

Case (ii) \(n \) is even. If \(n = 4 \), attach one pendant edge to \(v_3 \). Then the resulting graph is 1-Neighbourly Irregular graph of the smallest order 5. Let \(P_n(n \geq 6) \) be a path of length \(n - 1 \). \(V(P_n) = \{v_1, v_2, v_3, v_4, \ldots, v_n\} \). By attaching one pendant vertex to \(v_i, i = 3, 5, 7, 9, \ldots, n - 1 \), the resulting graph is 1-Neighbourly Irregular graph of order \((3n - 2)/2 \).

Example 4.4.7. Figure 4.8 illustrates Theorem 4.4.6 for \(n = 5, 7 \) and \(n = 6, 8 \).

![Figure 4.8](image)

Theorem 4.4.8. For \(n \geq 2 \), the smallest order of 1-Neighbourly Irregular graph containing \(K_n \) as an induced subgraph is \(2n - 1 \).
Proof. Let K_n be the complete graph of order $n \geq 2$. If $n = 2$, then the graph P_3 is 1-Neighbourly Irregular graph containing K_2. Let $n \geq 3$ and $V(K_n) = \{v_i : (1 \leq i \leq n)\}$. The desired graph KN_1 has the vertex set $V(KN_1) = V(K_n) \cup V(U)$, where $V(U) = \{u_i : (1 \leq i \leq n-1)\}$. Let $E(KN_1) = E(K_n) \cup \{v_iu_j : 1 \leq i \leq n, 1 \leq j < i\}$. Moreover, $d(v_i) = n - 2 + i$, $(1 \leq i \leq n)$ and $d(u_i) = n - i$, $(1 \leq i \leq n - 1)$. Then, the resulting graph (KN_1) is a 1-Neighbourly Irregular graph of order $2n - 1$ which contains K_n as an induced subgraph.

Remark 4.4.9. A graph is called pairlone if it has exactly two vertices of the same degree. It is observed that $d(v_i)$ in (KN_1) is $n + i - 2$, $(1 \leq i \leq n)$, $d(u_i)$ in (KN_1) is $n - i$, $(1 \leq i \leq n - 1)$. The degree sequence is $(1, 2, 3, 4, \ldots, [(2n - 1)/2], [(2n - 1)/2], \ldots, 2n - 2)$. Ebrahim Salehi called this graph a pairlone graph PL_n and proved that for any n, there exists a unique pairlone graph of order n, which contains at least one vertex of each possible degree[10].

4.5 2-Neighbourly Irregular graph (2-NI)

Definition 4.5.1. A connected graph G is said to be 2-Neighbourly Irregular (2-NI) if no two adjacent vertices of G have the same number of vertices at a distance two away from them. A connected graph G is 2-Neighbourly Irregular if $d_2(u) \neq d_2(v)$, for all uv in $E(G)$, where $d_2(v)$-denotes the number of vertices at a distance two from v in G[36].

Example 4.5.2. Graphs shown in Figure 4.9 are 2-Neighbourly Irregular graphs.
Example 4.5.3. Gear graph is obtained from the wheel $W_n (n \neq 4)$ by inserting a vertex between every pair of adjacent vertices of the cycle. Graphs in Figure 4.10 are Gear graphs. Gear graph is 1-Neighbourly irregular and 2-Neighbourly Irregular.

Proof. Let the vertex set of Gear graph be $\{v_1, v_2, v_3, \ldots, v_n\} \cup \{v\} \cup \{u_1, u_2, u_3, \ldots, u_n\}$ and edge set $\{vv_i : (1 \leq i \leq n)\} \cup \{v_iu_i : (1 \leq i \leq n)\} \cup \{u_iu_{i+1} : (1 \leq i \leq n - 1)\} \cup \{u_nv_1\}$. It is noted that $d_2(v_i) = n - 1$, $(1 \leq i \leq n)$ and $d_2(u_i) = 3$, $(1 \leq i \leq n)$. Also, $d_2(v) = n$. Hence no two adjacent vertices have the same d_2. Gear graph is 2-Neighbourly Irregular, for $n \neq 4$.

Remark 4.5.4. When $n = 4$, $d_2(v_i) = 3$, for $(1 \leq i \leq 4)$, $d_2(u_i) = 3$, for $(1 \leq i \leq 4)$ and $d_2(v) = 4$. Hence Gear graph is not 2-Neighbourly Irregular for $n = 4$.

Theorem 4.5.5. Any complete m partite graph K_{n_1,n_2,\ldots,n_m} is 2-Neighbourly Irregular if and only if no two n_i’s are equal.

Proof. Let $G(V, E)$ be a complete m partite graph with partition $(V_{n_1}, V_{n_2}, \ldots, V_{n_m})$ of V. Then every vertex in vertex set V_{n_i} is adjacent to all other vertices in the remaining $m - 1$ partite sets and non-adjacent with vertices in the same set $V_{n_i} (1 \leq i \leq m)$. Hence every vertex in V_{n_i} is at a distance two from $n_i - 1$ vertices, $(1 \leq i \leq m)$. For any vertex $v \in V_{n_i}$, $d_2(v) = n_i - 1$, $(1 \leq i \leq m)$. Let u, v be two adjacent vertices of G. Then, u and v are in two different partition sets of V. Let $u \in V_{n_i}$ and $v \in V_{n_j}$ where $i \neq j$. G is 2-Neighbourly Irregular if and only if $d_2(u) \neq d_2(v)$, $uv \in E(G)$ if and only if $n_i - 1 \neq n_j - 1$, for $i \neq j$ if and only if $n_i \neq n_j$, for $i \neq j$. Hence K_{n_1,n_2,\ldots,n_m} is 2-Neighbourly Irregular if and only if no two n_i’s are equal.

Example 4.5.6. Figure 4.11 illustrates Theorem 4.5.5 for $K_{2,3,4}$.
The above graph $K_{2,3,4}$ is m-Neighbourly Irregular graph for $m = 1, 2$.

Theorem 4.5.7. For any $n \geq 3$, there exists at least one 2-Neighbourly Irregular graph of order n.

Proof. Every positive integer $n \geq 3$ has a partition $(1, n-1)$. Hence every positive integer $n \geq 3$ has at least one partition with distinct parts. For each partition with distinct parts, there exists a complete partite graph. Then, for any $n \geq 3$, there exists at least one K_{n_1,n_2,\ldots,n_m} such that $n_i's$ are distinct.

Remark 4.5.8. The class of all K_{n_1,n_2,\ldots,n_m} graphs is only a proper subclass of the class of all 2-Neighbourly Irregular graphs. For example, graph in Figure 4.12 is 2-Neighbourly Irregular graph of order 5, which is not in the class of all K_{n_1,n_2,\ldots,n_m} graphs.

4.6 $S_{m,t}$-graph

Some other class of 2-Neighbourly Irregular graphs which are not in the class of all K_{n_1,n_2,\ldots,n_m} graphs are discussed in this section.

Definition 4.6.1. Let $S_{m,t}$ denote the bipartite graph of order n having distinct partite sets $V_1 = \{u_1, u_2, \ldots, u_m\}$ and $V_2 = \{v_1, v_2, \ldots, v_t\}$, where $m < t$, and edge set $E(S_{m,t}) = \cup E_i$, where $E_i = \{u_iv_j : m - i + 1 \leq j \leq t \text{ and } 1 \leq i \leq m\}$. By the
construction of $S_{m,t}, d_2(u_i) = m - 1, (1 \leq i \leq m)$, and $d_2(v_i) = t - 1 (1 \leq i \leq m)$ with $m < t$. Hence $S_{m,t}$ is 2-Neighbourly Irregular graph of order n, where $n = m + t$ and $m < t$.

Example 4.6.2. Graphs given in Figure 4.13 are 2-Neighbourly Irregular graphs

![Graphs](image)

Remark 4.6.3. For each odd n, $((n - 1)/2)S_{m,t}$ graphs exist. For each even n, $((n - 2)/2)S_{m,t}$ graphs exist.

Theorem 4.6.4. For any $n \geq 3$, there exists at least one $S_{m,t}(m < t)$ of order $n = m + t$.

Proof. Since every positive integer $n \geq 3$ has at least one partition with distinct parts, the theorem follows.

Theorem 4.6.5. If any vertex v in a graph G is adjacent with vertex u of degree n and non adjacent with vertices which are adjacent with u, then v is at a distance two from at least $n - 1$ vertices.
Theorem 4.6.6. If a graph G is 2-Neighbourly Irregular, and it contains a path P_4, then P_4 does not contain internal vertices having the same number of vertices at a distance two from them.

Proof. Let G be any 2-Neighbourly Irregular graph. Suppose P_4 is in G, then the internal vertices of P_4 being adjacent, there must be different number of vertices at a distance two from them. \qed

Example 4.6.7. Figure 4.14 illustrates Theorem 4.6.6

![Figure 4.14](image)

Remark 4.6.8. List of connected 2-Neighbourly Irregular graphs of order n up to six.

1. $n = 1, 2$. There is no 2-Neighbourly Irregular graph of order 1 and 2.

2. $n = 3$. Path P_3 is the only 2-Neighbourly Irregular graph of order 3.

![Diagram for n=3](image)

3. $n = 4$. Star $K_{1,3}$ is the only 2-Neighbourly Irregular graph of order 4.

![Diagram for n=4](image)

4. $n = 5$. There are five 2-Neighbourly Irregular graph of order 5.

![Diagram for n=5](image)

5. $n = 6$. There are eleven 2-Neighbourly Irregular graph of order 6.
4.7 Construction of 2-Neighbourly Irregular graph Containing a Given Graph as an Induced Subgraph

A 2-Neighbourly Irregular graph containing a given graph as an induced subgraph is constructed by attaching pendant edges and 2-Neighbourly regular strength of G is also defined. Also, minimum number of additional vertices needed to construct 2-Neighbourly Irregular graph containing some particular graphs are determined[36].

Theorem 4.7.1. For $n \geq 1$, the minimum order of 2-Neighbourly Irregular graph containing a regular complete bipartite graph $K_{n,n}$ of order $2n$ as an induced subgraph is $2n + 1$.

Proof. By attaching one pendant edge to any vertex of $K_{n,n}$ there is a 2-Neighbourly Irregular graph of order $2n + 1$, since, because of this attachment d_2 of each vertex in one partition becomes n and d_2 of each vertex in another partition set becomes $n - 1$. Hence no two adjacent vertices have the same d_2-degree. \(\square\)

Theorem 4.7.2. For any $n > 3$, every n-cycle is an induced subgraph of 2-Neighbourly Irregular graph of order $2n$.

Proof. Let n-cycle be the given graph.

Case (i) n is even ($n \geq 4$). By attaching two pendant edges to alternate vertices
of \(n \)-cycle (\(n \) is even), 2-Neighbourly Irregular graph of order \(2n \) is obtained.

Case (ii) \(n \) is odd (\(n \geq 5 \)).

Let \(C_n \) be an odd \(n \)-cycle. \(V(C_n) = \{v_1, v_2, v_3, \ldots, v_n\} \). By attaching three pendant edges to \(v_1 \), and two pendant edges to \(v_i \), for \(i = 3, 5, 7, \ldots, n - 2 \), then the resulting graph will be 2-Neighbourly Irregular graph of order \(2n \) containing \(C_n \) (n odd) as an induced subgraph.

Illustration: Figure 4.16 illustrates Theorem 4.7.2 for \(n = 5, 6, 7, 8 \).

![Figure 4.16](image)

Theorem 4.7.3. For any \(n \geq 3 \), every path \(P_n \) is an induced subgraph of 2-Neighbourly Irregular graph (tree) of order \(2n - 3 \).

Proof. Case (i) \(n \) is odd. If \(n = 3 \), \(P_3 \) is 2-Neighbourly Irregular graph. Let \(P_n (n \geq 5) \) be a path of length \(n - 1 \). \(V(P_n) = \{v_1, v_2, v_3, v_4, \ldots, v_n\} \). By attaching one pendant edge to \(v_2 \) and attaching one pendant edge to \((n - 1)^{th} \) vertex of \(P_n \) and then attaching two pendant edges to \(v_i \), for \(i = 4, 6, 8, \ldots, n - 3 \), 2-Neighbourly Irregular graph (tree) of order \(2n - 3 \) is obtained.

Illustration: Figure 4.17 illustrates Theorem 4.7.3 for \(n = 5, 7, 9 \).

![Figure 4.17](image)

Case (ii) \(n \) is even. If \(n = 4 \), attach one pendant edge to \(v_2 \), then there is a 2-Neighbourly Irregular graph of the smallest order 5. Let \(P_n (n \geq 6) \) be a path of length \(n - 1 \). \(V(P_n) = \{v_1, v_2, v_3, v_4, \ldots, v_n\} \). By attaching one pendant edge to \(v_2 \), and attaching two pendant edges to \(v_i \), (\(1 \leq i \leq n - 2 \)), there is a 2-Neighbourly Irregular graph of order \(2n - 3 \).
Illustration: Figure 4.18 illustrates Theorem 4.7.3 for \(n = 4, 6, 8, 10 \).

\[
\begin{array}{cccccc}
2 & 1 & 2 & 1 & 2 & 1 \\
2 & 1 & 5 & 2 & 6 & 2 \\
2 & 3 & 3 & 2 & 3 & 3 \\
2 & 3 & 3 & 3 & 3 & 3 \\
2 & 1 & 5 & 2 & 6 & 2 \\
2 & 6 & 2 & 3 & 1 & 2 \\
2 & 3 & 3 & 3 & 3 & 3 \\
2 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

Figure 4.18

Theorem 4.7.4. For \(n \geq 2 \), the smallest order of 2-Neighbourly Irregular graph containing \(K_n \) as an induced subgraph is \(2n - 1 \).

Proof. The graph \(KN_1 \), constructed in Theorem 4.4.8 is a 2-Neighbourly Irregular graph of order \(2n - 1 \) containing \(K_n \) as an induced subgraph. It is noted that \(d_2(v_i) = n - i \), \((1 \leq i \leq n) \) and \(d_2(u_i) = n + i - 2 \), \((1 \leq i \leq n - 1) \). Hence no two adjacent vertices have the same number of vertices at a distance two from them. This graph contains at least one vertex of each possible \(d_2 \)-degree. \(\square \)

Now, \(d_m \)-pairlone graph is defined.

Definition 4.7.5. A graph \(G \) is called \(d_m \)-pairlone if it has exactly two vertices of the same \(d_m \)-degree, \((m, \) a positive integer).

Remark 4.7.6. Ebrahim Salehi called the graph \(KN_1 \) as a pairlone graph[10]. The \(d_2 \) sequence of \(KN_1 \) is \((0, 1, 2, 3, 4, \ldots, [(2n - 1)/2], [(2n - 1)/2] \ldots, (2n - 3)) \). The graph \(KN_1 \) has exactly two vertices of the same \(d_2 \)-degree, and so this graph is called \(d_2 \)-pairlone.

Illustration: Figure 4.19 illustrates Theorem 4.7.4 for \(n = 2, 3, 4, 5 \).
Remark 4.7.7. If one pendant edge is attached to the vertex which has $d_2 = 0$ (or maximum degree vertex) then 2-Neighbourly Irregular graph of even order is obtained. By attaching n-pendant edges to the vertex which has $d_2 = 0$ (or maximum degree), then 2-Neighbourly Irregular graph is got, and d_2 of each vertex is increased by n.

Theorem 4.7.8. There exists a 2-Neighbourly Irregular graph of order $4n - 1$, containing every graph of order $n \geq 2$ as an induced subgraph.

Proof. Let G be any graph of order n. Let $V(G) = \{v_i : 1 \leq i \leq n\}$. The desired graph N_2 has the vertex set $V(N_2) = V(G) \cup V(T) \cup V(W)$, where $V(T) = \{t_i : 1 \leq i \leq n\}$ and $V(W) = \{w_i : 1 \leq i \leq 2n - 1\}$. Let $E(N_2) = E(G) \cup \{v_it_i : 1 \leq i \leq n\} \cup \{t_iw_j : 1 \leq i \leq n, 1 \leq j \leq n - 1 + i\} \cup \{v_jt_i : v_jv_i \notin E(G), 1 \leq i \leq n, i + 1 \leq j \leq n\}$. Then $d_2(v_i) \in N_2 = 2n - 2 + i$, $(1 \leq i \leq n), d_2(w_i) \in N_2 = 3n - 2, (1 \leq i \leq n)$, $d_2(w_{i+n-1}) \in N_2 = 3n - i - 1, (2 \leq i \leq n)$; $d_2(w_i) \in N_2 \neq d_2(t_i) \in N_2, (1 \leq i \leq n)$, and $d_2(w_{i+n-1}) \in N_2 \neq d_2(t_i) \in N_2, (1 \leq i \leq n)$. Hence the desired graph N_2 is the 2-Neighbourly Irregular graph of order $4n - 1$ containing every graph of order $n \geq 2$ as an induced subgraph. Number of edges in the graph N_2 is $2n^2$. □

Illustration: Figure 4.20 illustrates Theorem 4.7.8 for $n = 3$.

Remark 4.7.9. It is observed that 2-Neighbourly Irregular graph containing K_2 as an induced subgraph is P_3 and is of order 3, and 2-Neighbourly Irregular graph containing $K_{2,2}$ as an induced subgraph is of order 5. But in the above construction, 2-Neighbourly Irregular graph containing K_2 as an induced subgraph is of order 7, and 2-Neighbourly Irregular graph containing $K_{2,2}$ as an induced subgraph is of order 15. For every graph G, the minimum number of additional vertices needed to construct 2-Neighbourly Irregular graph containing G, are to be considered, and 2-Neighbourly Regular Strength of G is to be defined.
Definition 4.7.10. Let G be a graph with n vertices. The m-Neighbourly Regular Strength (m-NRS) of G is the minimum number k denoting the additional vertices needed to construct a m-Neighbourly Irregular graph containing G as an induced subgraph of the m-Neighbourly Irregular graph.

Definition 4.7.11. Let G be a graph with n vertices. The 2-Neighbourly Regular Strength (2-NRS) of G is the minimum number k denoting the additional vertices needed to construct a 2-Neighbourly Irregular graph containing G as an induced subgraph of the 2-Neighbourly Irregular graph (m, a positive integer).

Result 4.7.12. $2 - \text{NRS}(C_n) = n$, $2 - \text{NRS}(P_n) = n - 3$, $2 - \text{NRS}(K_{n,n}) = 1$, $2 - \text{NRS}(P_3) = 0$, $2 - \text{NRS}(2-\text{NIgraph}) = 0$, $2 - \text{NRS}(K_n) = (n - 1)$ and $2 - \text{NRS}(N_2) = 0$, where N_2 is the graph constructed in theorem 4.7.8.

4.8 Minimal Edge Covering

Minimum number of edges which cover all the vertices of a graph is called minimal edge covering number.

Theorem 4.8.1. The minimal edge covering number of 2-Neighbourly Irregular graph N_2 of order $4n - 1$ containing a given graph of order $n \geq 1$ as an induced subgraph is $3n - 1$.

Proof. Let $w_1, w_2, w_3, w_4, \ldots, w_n, w_{n+1}, \ldots, w_{2n-2}, w_{2n-1}; t_1, t_2, t_3, \ldots, t_n$ and $v_1, v_2, v_3, v_4, \ldots, v_n$ are the vertices of 2-Neighbourly Irregular graph N_2 of order $4n - 1$ (constructed in Theorem 4.7.8) containing any given graph of order $n \geq 1$ as an induced subgraph.

Let E_1 be the set of edges $t_1w_1, t_1w_2, t_1w_3, \ldots, t_1w_{n-1}, t_1w_n, t_2w_{n+1}, t_3w_{n+2}, \ldots, t_nw_{2n-1}$. This set E_1 covers all the vertices $w_1, w_2, w_3, w_4, \ldots, w_n, w_{n+1}, \ldots, w_{2n-2}, w_{2n-1}$ and $t_1, t_2, t_3, \ldots, t_n$. The remaining vertices $v_1, v_2, v_3, v_4, \ldots, v_n$ are covered by the edges $t_1v_1, t_2v_2, t_3v_3, \ldots, t_{n-1}v_{n-1}, t_nv_n$. Since the given graph is K_n^c then n-edges are needed to cover all vertices of the given graph. Hence the minimal edge covering number of 2-Neighbourly Irregular graph N_2 of order $4n - 1$ containing the given graph of order n as an induced subgraph is $3n - 1$. \qed
4.9 Minimal Vertex Covering

Minimum number of vertices which cover all the edges of a graph is called *minimal vertex covering number*.

Theorem 4.9.1. The minimal vertex covering number of 2-Neighbourly Irregular graph N_2 of order $4n - 1$ containing the given graph of order $n \geq 1$ as an induced subgraph is $2n - 1$.

Proof. The vertices $t_1, t_2, t_3, \ldots, t_n$ cover all the edges in the sets $\{v_i t_i : 1 \leq i \leq n\} \cup \{t_i w_j : 1 \leq i \leq n, 1 \leq i \leq n - 1 + j\}$, and the remaining edges are covered by $n - 1$ vertices of $v_1, v_2, v_3, v_4, \ldots, v_n$. Since the given graph is K_n, then $n - 1$ vertices are needed to cover all edges of the given graph. Hence the minimal vertex covering number of 2-Neighbourly Irregular graph N_2 of order $4n - 1$ containing the given graph of order $n \geq 1$ as an induced subgraph is $2n - 1$. \hfill \square

4.10 m-Neighbourly Irregular Trees

For any positive integer m, m-Neighbourly Irregular tree and strict m-Neighbourly Irregular tree are defined in this section and a few properties possessed by 2-neighbourly irregular trees are also included.

Definition 4.10.1. A tree T is said to be *m-neighbourly irregular tree* if no two adjacent vertices of T have the same d_m-degree (m, a positive integer).

Definition 4.10.2. A tree T is said to be *2-Neighbourly Irregular (2-NI) tree* if no two adjacent vertices of T have the same number of vertices at a distance two away from them.

Theorem 4.10.3. Star $K_{1,n}(n \geq 2)$ is m-Neighbourly Irregular tree, for $m = 1, 2$.

Theorem 4.10.4. Subdivision of $K_{1,n}(n \geq 3)$ is m-Neighbourly Irregular tree, for $m = 1, 2$.

Proof. Let $K_{1,n}(n \geq 3)$ be a star. Let u be the center vertex of degree n. Let v_1, v_2, \ldots, v_n be vertices adjacent to u. Subdividing each edge of $K_{1,n}$ one time,
\(Sub(K_{1,n}) \) is got. New \(n \) vertices \(w_1, w_2, w_3, \ldots, w_n \) are got so that each \(w_i \) is adjacent to center vertex \(u \) and adjacent to \(v_i \), \(d_2(u) = n, d_2(v_i) = 1, (1 \leq i \leq n) \), and \(d_2(w_i) = n - 1, (1 \leq i \leq n) \). Hence \(Sub(K_{1,n}, (n \geq 3)) \) is 2-Neighbourly Irregular tree. The size of this graph is \(2n \). \hfill \square

Theorem 4.10.5. If the middle edge of \(B_{n,n}(n \geq 2) \) is subdivided one time, then the resulting graph is \(m \)-Neighbourly Irregular graph, for \(m = 1, 2 \).

Proof. Let \(V(K_2) = \{v_1, v_2\} \). Let \(u_i(1 \leq i \leq n) \) be the vertices adjacent to \(v_1 \) and \(w_i(1 \leq i \leq n) \) be the vertices adjacent to \(v_2 \). Subdividing \(v_1v_2 \), a new vertex \(x \) which is adjacent to both \(v_1 \) and \(v_2 \) is got. Then \(d_2(v_1) = 1, d_2(v_2) = 1, d_2(u_i) = n, (1 \leq i \leq n) \) and \(d_2(w_i) = n, (1 \leq i \leq n) \), \(d_2(x) = 2n \). Hence 2-Neighbourly Irregular tree of order \(2n + 3 \) is got. \hfill \square

Theorem 4.10.6. Subdivision of \(B_{n,n}(n \geq 2) \) is 2-Neighbourly Irregular tree of order \(4n + 3 \).

Proof. Let \(V(K_2) = \{v_1, v_2\} \). Let \(u_i(1 \leq i \leq n) \) be the vertices adjacent to \(v_1 \) and \(w_i(1 \leq i \leq n) \), be the vertices adjacent to \(v_2 \). Subdividing each edge of \(B_{n,n} \) one time, \(Sub(B_{n,n}) \) is got. In \(Sub(B_{n,n}) \), for each edge \(v_1u_i(1 \leq i \leq n) \), \(n \) vertices \(x_1, x_2, \ldots, x_n \) are got so that each \(x_i \) is adjacent to \(v_1 \) and \(u_i \), for each edge \(v_2w_i(1 \leq i \leq n) \), \(n \) vertices \(y_1, y_2, \ldots, y_n \) are got so that each \(y_i \) is adjacent to \(v_2 \) and \(w_i \). For the edge \(v_1v_2 \), a new vertex \(x \) which is adjacent to both \(v_1 \) and \(v_2 \) is got. For \(1 \leq i \leq n, d_2(u_i) = 1, d_2(x_i) = n, d_2(w_i) = 1, d_2(y_i) = n, d_2(v_1) = n + 1, d_2(v_2) = n + 1 \) and \(d_2(x) = 2n \). Hence \(Sub(B_{n,n}) \) is 2-Neighbourly Irregular tree of order \(4n + 3 \). \hfill \square

Theorem 4.10.7. \(B_{n,m}, (n \neq m) \) tree is \(m \)-Neighbourly Irregular, for \(m = 1, 2 \).

Proof. Let \(V(K_2) = \{v_1, v_2\} \). Let \(v_i(1 \leq i \leq n) \) be the vertices adjacent to \(v_1 \) and non adjacent with \(v_2 \), and \(u_i(1 \leq i \leq m) \) be the vertices adjacent to \(v_2 \) and non adjacent with \(v_1 \). Then, \(d_2(v_i) = m, d_2(v_i) = n, (1 \leq i \leq n) \) and \(d_2(v_2) = n, d_2(u_i) = m, (1 \leq i \leq m) \). Hence \(B_{n,m} \) is 2-Neighbourly Irregular tree of order \(2 + m + n \). \hfill \square

Definition 4.10.8. An \(m \)-Neighbourly Irregular tree \(T \) is called **strict \(m \)-Neighbourly Irregular tree** if removal of any pendant vertex in \(T \) results in a non \(m \)-Neighbourly Irregular tree \((m, a \text{ positive integer}) \).
Example 4.10.9. The graphs given in Figure 4.21 are strict 2-Neighbourly Irregular trees.

![Figure 4.21](image)

4.11 Some results related to 1-Neighbourly Irregular graph and 2-Neighbourly Irregular graph

Some results connected with 1-Neighbourly Irregular graphs and 2-Neighbourly Irregular graphs are presented in this section[43].

Example 4.11.1. The graph $K_{n_1,n_2,...,n_m}$ where n_i's are distinct is 1-Neighbourly Irregular and 2-Neighbourly Irregular. But in Figure 4.22, graphs (a) and (b) illustrate '2-Neighbourly Irregular graph that need not be 1-Neighbourly Irregular' and graph (c) illustrates '1-Neighbourly Irregular graph that need not be 2-Neighbourly Irregular". (vertices are labeled by their d_2-degrees).

![Figure 4.22](image)

Theorem 4.11.2. Graph G is a 1-Neighbourly Irregular graph of diameter two if and only if G is 2-Neighbourly Irregular graph of diameter two.
Proof. Let G be 1-Neighbourly Irregular graph of diameter two if and only if $d(u) \neq d(v)$, for all $uv \in E(G)$ if and only if $n - 1 - d(u) \neq n - 1 - d(v)$, for all $uv \in E(G)$ if and only if $d_2(u) \neq d_2(v)$, for all $uv \in E(G)$ if and only if G is 2-Neighbourly Irregular graph of diameter two.

Example 4.11.3. Flower graph obtained from a helm by joining each pendant vertex to the central vertex of the helm is not m-NI, for $m = 1, 2$ (vertices are labeled by their d_2-degrees).

Remark 4.11.4. List of graphs both 1-Neighbourly Irregular and 2-Neighbourly Irregular up to order six

1. If $m = 1, 2$ then the only one m-Neighbourly Irregular graph of order three is P_3.

2. If $m = 1, 2$ then the is only one m-Neighbourly Irregular graph of order four is $K_{1,3}$.

3. If $m = 1, 2$ then there are only four m-Neighbourly Irregular graphs of order five.

4. If $m = 1, 2$ then there are only ten m-Neighbourly Irregular graphs of order six.
4.12 Graph Products in 2-Neighbourly Irregular Graphs

Definition 4.12.1. A graph is 2-Neighbourly Irregular if no two adjacent vertices of G have the same number of vertices at a distance two away from them [36].

Definition 4.12.2. The Cartesian product $G_1 \times G_1$ of two graphs G_1 and G_2 is the simple graph with $V_1 \times V_2$ vertex set, and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if and only if either $u_1 = u_2$ and v_1 is adjacent to v_2 in G_2 or $v_1 = v_2$ and u_1 is adjacent to u_2 in $G_1[6]$.

Illustration:

![Graph Illustration](image)

Note 1: Cartesian Product of 2-Neighbourly Irregular graphs need not be 2-Neighbourly Irregular graph.

Illustration: P_3 is 2-Neighbourly Irregular graph. But Cartesian product of $P_3 \times P_3$ is not 2-Neighbourly Irregular graph.
Definition 4.12.3. The *composition* of two simple graphs G and H is the simple graph $G[H]$ denoted with vertex set $V(G) \times V(H)$, in which (u_1, v_1) is adjacent to (u_2, v_2) if and only if either $u_1 u_2 \in E(G)$ (or) $u_1 = u_2$ and $v_1 v_2 \in E(H)$. Also, degree of (u_1, v_1) in $G[H]$ is equal to $d(u_1)|V(H)| + d(v_1)$ [6].

Note 2: P_3 is 2-Neighbourly Irregular graph. The composition graph $P_3[P_3]$ is 2-Neighbourly Irregular graph.

Illustration:

![Figure 4.26](image)

Note 3: Composition of two 2-Neighbourly Irregular graphs need not be 2-Neighbourly Irregular graph.

Illustration:

![Figure 4.27](image)

G is 2-Neighbourly Irregular graph. But composition graph $G[G]$ is not 2-Neighbourly Irregular graph.

Definition 4.12.4. The *join* of graphs G and H is the simple graph denoted by $G + H$ with vertex set $V(G) \cup V(H)$, in which each vertex of G is adjacent to every vertex of H. The degree of a vertex u in $G + H$ is equal to $d(u) + |V(H)|$, $u \in V(G)$ and the degree of a vertex v in $G + H$ is equal to $d(v) + |V(G)|$, $v \in V(H)$ [6].
Note 4: Join of two 2-Neighbourly Irregular graph need not be 2-Neighbourly Irregular graph.

Illustration:

Conclusion and Scope: For further investigation, we state the following open problems.

1. The nature of the graph products namely cartesian, composition and join on \(m \)-Neighbourly Irregular graph for \(m \geq 3 \) may be investigated.

2. The nature of the graph products other than cartesian and composition and join on \(m \)-Neighbourly Irregular graphs for \(m \geq 2 \) may be investigated

3. \(m \)-Neighbourly Irregular graph for \(m \geq 3 \) containing given graph of order \(n \geq 2 \), as an induced subgraph may be constructed.