Chapter 5

d$_m$ - Splitting Graph of a Graph

For $m \geq 2$, d_m of a vertex in a graph is defined in this chapter and some properties are studied. Also, some graph products in $(2,k)$-regular graphs and $(r,2,k)$-regular graphs are discussed. For $m \geq 2$, d_m-Splitting graph of a graph is defined and some properties are also studied.

5.1 Introduction

The degree of a vertex v is the number of edges incident at v. A graph is regular if all its vertices have the same degree. Consequently, the degree of a vertex v is the number of vertices at a distance one from v. For a positive integer m and a vertex v of a graph G, the d_m-degree of v in G, denoted by $d_m(v)$ is defined as the number of vertices at a distance m from v. Hence $d_1(v) = d(v)$.

A concept related to the F-degree of a vertex was first introduced by Kocay [10], when reconstructing degree sequence on graphs. A graph G is said to be F-regular if the F-degrees of all the vertices of G are the same, and it is called F-irregular if the F-degrees of the vertices of G are distinct[2, 10].

In a similar way, d_m of a vertex in a graph is defined. For a given graph G, the d_m-degree of a vertex v in G, denoted by $d_m(v)$ means number of vertices at a distance m from v. A graph G is said to be d_m-regular if d_m-degree of all the vertices of G are the same. A graph G is called d_m-irregular if the d_m-degrees of G are distinct, but there is no d_m-irregular graph. It is observed that (m,k)-regular
A graph G is said to be (m,k)-regular if $d_m(v) = k$, for all v in G. A graph G is said to be (r, m, k)-regular if $d(v) = r$ and $d_m(v) = k$, for all v in G.[33]

In this chapter, the focus is on d_2 of a vertex in a graph and d_2 of a vertex in graph product, especially graph product in $(2,k)$-regular graphs and $(r,2,k)$-regular graphs. The splitting graph $S(G)$ was introduced by E. Sampath Kumar and H. B. Walikar[32].

In a similar way, Degree splitting graph $DS(G)$ was introduced by R. Ponraj and S. Somasundaram [30].

Inspired by these definitions, d_m- splitting graph of a graph G denote by $D_mS(G)$ is defined and some properties of $D_mS(G)$ are investigated. Also, d_2 splitting graph of a graph G denoted by $D_2S(G)$ is defined and some properties of $D_2S(G)$ are investigated.

5.2 d_m of a vertex in graphs

In this section, d_m of a vertex in graph is defined and some results about d_m of a vertex in graph are proved.

Definition 5.2.1. Let G be a graph and $d_m(v)$ be defined as the number of vertices at a distance m from v. $N_m(v)$ denotes the set of all vertices that are at a distance m from v in a graph $G(m)$, a positive integer).

Definition 5.2.2. Let $\delta_m(v) = \min\{d_m(v) : v \in V(G)\}$ and $\Delta_m(v) = \max\{d_m(v) : v \in V(G)\}$. If $\delta_m(v) = \Delta_m(v) = d_m(v) = k$, then G is a (m,k)-regular graph.

Definition 5.2.3. Let G^* be a graph with vertex set the same as that of G. The vertices v_1, v_2 are adjacent in G^* if and only if they are at a distance m away from each other in $G[3]$.

Theorem 5.2.4. The d_m of each vertex in G is equal to the degree of the corresponding vertex in G^*.
Proof. Let \(v \) be any vertex in \(G \). Let \(d_m(v) = k \), where \(k \geq 0 \). By definition of \(G^* \), \(v \) is adjacent to exactly \(k \) vertices in \(G^* \) that are at a distance \(m \) from \(v \) in \(G \). Hence \(d_m(v) \) in \(G = d(v) \) in \(G^* \).

Theorem 5.2.5. Any graph \(G \) with at least two vertices contains at least two vertices of the same \(d_m \).

Proof. Let \(G \) be a graph with at least two points. Then, \(d_m(v) \) in \(G = d(v) \) in \(G^* \), for all \(v \in V(G) \). For every graph \(G \), there exists one \(G^* \) graph and any graph with at least two vertices contains at least two vertices of the same degree. Then \(G^* \) has at least two vertices of the same degree. Without loss of generality, it is assumed that the vertices \(u \) and \(v \) have the same degree in \(G^* \). By definition of \(G^* \), \(d_m(u) = d_m(v) \) in \(G \). Hence \(G \) has at least two vertices of same \(d_m \). □

Definition 5.2.6. A vertex \(v \) in a graph \(G \) is called odd (even) \(d_m \) vertex if the number of vertices at a distance \(m \) from \(v \) is odd (even).

Theorem 5.2.7. For any graph \(G \), the number of odd \(d_m \) vertices in \(G \) is even.

Proof. Let \(v_1, v_2, v_3, \ldots, v_k \) be the odd \(d_m \) vertices in \(G \) and \(w_1, w_2, w_3, \ldots, w_m \) be the even \(d_m \) vertices in \(G \). By definition of \(G^* \), \(v_1, v_2, v_3, \ldots, v_k \) be the odd degree vertices in \(G^* \) and \(w_1, w_2, w_3, \ldots, w_m \) be the even degree vertices in \(G^* \).

\[
\sum_{i=1}^{k} d_m(v_i) = \sum_{i=1}^{k} d(v_i) \text{ in } G^* = 2|E(G^*)| - \sum_{i=1}^{m} d(v_i) = \text{even}.
\]

Each \(d_m(v_i) \) is odd. Hence \(k \) must be even. □

Definition 5.2.8. A graph \(G \) is \(d_m \)-regular if the \(d_m \) of all the vertices in \(G \) are the same, where \(d_m \) - denotes number of vertices that are at a distance \(m \) from a vertex. Hence a graph \(G \) is \(d_m \)- regular if \(d_m(v) = k \), for all \(v \in G \). The \(d_m \)-regular graph and \((m, k)\)-regular graph and semiregular graph are the same. Here after, \((m, k)\)-regular graph is used for \(d_m \)-regular graph [33].

Theorem 5.2.9. For any odd \(k \geq 1 \), there is no \((m, k)\)- regular graph with odd order.
Proof. Let $k \geq 1$ be odd and let G be the (m, k)- regular graph of odd order. By definition of G^*, G^* is an odd regular graph with odd order, which is a contradiction, since no graph of odd order is odd regular. □

Theorem 5.2.10. Let G be a (m, k)- regular graph of order n. Then $\sum d_m(v) = nk$.

Definition 5.2.11. A graph G is d_m-irregular if the d_m of the vertices in the graph are distinct.

Theorem 5.2.12. For every $n \geq 2$, there is no non trivial d_m- irregular graph.

Proof. Let G be a graph with at least two vertices. By Theorem 5.2.5, any graph G with at least two vertices contains at least two vertices of the same d_m. Hence there is no non trivial d_m- irregular graph, for every $n \geq 2$. □

Remark 5.2.13. Let G be a graph and $d_2(v)$ be defined as the number of vertices at a distance two from v. $N(v)$ denotes the set of all vertices adjacent to v. $N_2(v)$ denotes the set of all vertices, that are at a distance two from v in a graph G.

Theorem 5.2.14. Let $v_1, v_2, v_3, \ldots, v_r$ be neighbours of v.

For any $v \in V(G)$, $N_2(v) = \bigcup_{i=1}^{r} \{N(v_i) - v\}$.

Remark 5.2.15. Fix $m = 2$. Consider the graph G^*. Two vertices v_1, v_2 are adjacent in G^* if and only if they are at a distance two away from each other in $G[3]$. Alison Northup proved that G is a k-semiregular if and only if G^* is k-regular.

Example 5.2.16. Figure 5.1 illustrates G^* in Remark 5.2.15.

![Figure 5.1](image)

Theorem 5.2.17. $d(v)$ in $G + d_2(v)$ in $G \leq n - 1$.
Theorem 5.2.18. \(G^* \) is a spanning subgraph of \(G^c \).

Theorem 5.2.19. Let \(G \) be a graph of order \(n \). \(G^* \) is isomorphic to \(G^c \) if and only if \(d(v) + d_2(v) = n - 1 \).

Proof. Let \(v \) be any vertex in \(G \). Let \(d(v) = i \) in \(G \). Suppose \(d(v) + d_2(v) = n - 1 \), then \(d(v) \) in \(G^* = n - 1 - i \) is the degree of \(v \) in \(G^c \), and \(G^* \) is the spanning subgraph of \(G^c \). Hence \(G^* \) is isomorphic to \(G^c \). Conversely, suppose \(G^* \) and \(G^c \) are isomorphic, then \(d(v) \) in \(G^* = d(v) \) in \(G^c \). Hence for any vertex \(v \) in \(G \), \(d(v) \) in \(G^* = n - 1 - i \), where \(i \) is the degree of \(v \) in \(G \). Hence \(d(v) + d_2(v) = n - 1 \).

Theorem 5.2.20. If \(G_1, G_2, G_3, \ldots, G_n \) are distinct \((2, k)\)-regular graph with the same number of vertices then \(G^*_1, G^*_2, G^*_3, \ldots, G^*_n \) are the same.

Example 5.2.21. Figure 5.2 illustrates Theorem 5.2.20.

The graphs \(G_1, G_2, G_3 \) are \((2, 2)\)-regular graphs, \(G^*_1 = G^*_2 = G^*_3 = G^* \).

![Figure 5.2](image)

Theorem 5.2.22. A graph \(G \) of order \(n \) has diameter 2 if and only if \(d(v) + d_2(v) = n - 1 \).

Proof. Let \(G \) be a graph of order \(n \) with diameter two. Any vertex \(v \) in \(G \) is adjacent to some vertices and non adjacent to the remaining vertices. Since \(diam(G) = 2 \), vertices which are non adjacent to the vertex \(v \) are only at a distance two away from \(v \). Hence \(d(v) + d_2(v) = n - 1 \). Conversely, \(d(v) + d_2(v) = n - 1 \) implies that \(diam(G) = 2 \), when \(G \) is a graph of order \(n \). □
5.3 d_2 of a vertex in Cartesian product, Composition (or Lexicographic product) and Join

d_2 of a vertex is studied in the following types of composite graphs $G \times H$, $G[H], G + H[48]$.

Theorem 5.3.1. Let G and H be connected graphs. Then, $d_2(u_1, v_1)$ in the cartesian product $G \times H = d_2(u_1) + d_2(v_1) + d(u_1)d(v_1)$.

Proof. $N(u_1, v_1)$ in $G \times H = \{u_1 \times N(v_1)\} \cup \{N(u_1) \times v_1\}$. Then, $N_2((u_1, v_1)$ in $G \times H = N(u_1 \times N(v_1)) \cup N(N(u_1) \times v_1) = (u_1 \times N(N(v_1))) \cup (N(N(u_1) \times v_1)) \cup N(u_1) \times N(v_1))$. Hence $d_2((u_1, v_1))$ in $G \times H = d_2(u_1) + d_2(v_1) + d(u_1)d(v_1)$.

Theorem 5.3.2. Let G and H be connected graphs. Then, $d_2(u_1, v_1)$ in the composition $G[H] = d_2(u_1)|V(H)| + |V(H)| - 1 - d(v_1)$.

Proof. $N(u_1, v_1)$ in $G[H] = \{N(u_1) \times V(H)\} \cup \{N(v_1)\}$ Then, $N_2(u_1, v_1)$ in $G[H] = \{(N(N(u_1)) \times V(H)) \cup \{N(N(v_1))\}$ in $G[H]$. Hence $N_2(u_1, v_1)$ in $G[H] = \{(N_2(u_1)) \times V(H)\} \cup \{N_2(v_1)\}$. Note that $G[H]$ be a graph obtained by taking $|G|$ copies of H and by joining all the vertices of the i^{th} and the j^{th} copy of H if and only if $u_i, u_j \in E(G)$. Hence any two vertices in $G[H]$ are either adjacent or at a distance two. Hence $\{N_2(v_1)\}$ in $G[H] = V(H) - \{v_1\} - N(v_1)$. Hence $d_2(u_1, v_1)$ in $G[H] = d_2(u_1)|V(H)| + |V(H)| - 1 - d(v_1)$.

Theorem 5.3.3. Let G and H be any two graphs. Then,

$$d_2(u) \text{ in } G + H = |V(G)| - 1 - d(u), \text{ for all } u \text{ in } V(G).$$

$$d_2(v) \text{ in } G + H = |V(H)| - 1 - d(v), \text{ for all } v \text{ in } V(H).$$

Proof. Any two vertices of $G + H$ are either adjacent or at a distance two. Let $u \in V(G)$ and $v \in V(H), N_2(u)$ in $G + H = V(G) - \{u\} - N(u)$ and $N_2(v)$ in $G + H = V(H) - \{v\} - N(v)$. Hence $d_2(u)$ in $G + H = |V(G)| - 1 - d(u), \text{ for all } u \text{ in } V(G)$ and $d_2(v)$ in $G + H = |V(H)| - 1 - d(v), \text{ for all } v \text{ in } V(H)$.

Using these theorems, d_2 of a vertex in graph products $G \times H, G[H], G + H$ can be easily calculated.
CHAPTER 5. \(d_m - \text{SPLITTING GRAPH OF A GRAPH} \)

5.4 Graph Products in \((2, k)\)-Regular Graphs

The graph products on \((2, k)\)-regular graphs is discussed here[45].

Definition 5.4.1. A graph \(G \) is \((2, k)\)-regular if \(d_2(v) = k \), for all \(v \in V(G) \), where \(d_2(v) \) is defined as the number of vertices at a distance two from \(v \).

Note 1: If the Cartesian product of two graphs is \((2, k)\)-regular, then it is not necessary that both are \((2, k)\)-regular.

Example 5.4.2. The graph \(P_3 \) is not a \((2, k)\) - regular graph, and \(K_2 \) is \((2, 0)\)-regular. Cartesian product of \(P_3 \times K_2 \) is a \((2, 2)\)-regular graph (Figure 5.3).

\[\begin{array}{ccc}
P_3 & K_2 & P_3 \times K_2 \\
\end{array} \]

Figure 5.3

Note 2: Cartesian product of two \((2, k)\) regular graphs need not be \((2, k)\)-regular.

Example 5.4.3. \(H \) and \(G \) are \((2, k)\)-regular but \(H \times G \) is not \((2, k)\)-regular (Figure 5.4).

\[\begin{array}{ccc}
H & G & H \times G \\
\end{array} \]

Figure 5.4

Note 3: Composition (Lexicographic product) of two \((2, k)\) - regular graphs need not be \((2, k)\)-regular.

Example 5.4.4. \(P_4 \) (Path on four vertices) is \((2, 1)\)-regular but \(P_4[P_4] \) is not \((2, k)\)-regular (Figure 5.5).
CHAPTER 5. d_m - SPLITTING GRAPH OF A GRAPH

Figure 5.5

Note 4: Join of two $(2, k)$-regular graphs need not be $(2, k)$-regular.

Example 5.4.5. H and G are $(2, k)$-regular but $H \cup G$ is not $(2, k)$-regular (Figure 5.6).

Figure 5.6

5.5 Graph Products in $(r, 2, k)$-Regular Graphs

The graph product on $(r, 2, k)$-regular graphs is discussed in this section[45].

Definition 5.5.1. A graph G is $(r, 2, k)$-regular if $d(v) = r, d_2(v) = k$, for all $v \in V(G)$ where $d_2(v)$ is defined as the number of vertices at a distance two from v.

Theorem 5.5.2. Let G be a connected $(r_1, 2, k_1)$-regular graph and H be a connected $(r_2, 2, k_2)$-regular graph. Then, the Cartesian product $G \times H$ is $(r_1 + r_2, 2, k_1 + k_2 + r_1 r_2)$-regular.

Proof. Let G be a connected $(r_1, 2, k_1)$-regular graph. Then, $d(u) = r_1$ and $d_2(u) = k_1$, for all $u \in V(G)$. Let H be a connected $(r_2, 2, k_2)$-regular graph. Then $d(v) = r_2$ and $d_2(v) = k_2$, for all $v \in V(H)$. Let $(u, v) \in V(G \times H)$. Consider $d(u, v) = d(u) + d(v) = r_1 + r_2$, for all $(u, v) \in G \times H$ and $d_2(u, v) = d_2(u) + d_2(v) + d(u)d(v) = k_1 + k_2 + r_1 r_2$, for all $(u, v) \in G \times H$. Hence $G \times H$ is $(r_1 + r_2, 2, k_1 + k_2 + r_1 r_2)$-regular. \square
Examples

1. $K_n \times K_n$ is $(2n - 2, 2, (n - 1)^2)$-regular, since $d(u, v) = d(u) + d(v) = n - 1 + n - 1 = 2n - 2$ and $d_2(u, v) = d_2(u) + d_2(v) + d(u)d(v) = 0 + 0 + (n - 1)(n - 1) = (n - 1)^2$.

2. For $n \geq 5$, $C_n \times C_n$ is $(4, 2, 8)$-regular, since $d(u, v) = d(u) + d(v) = 4$ and $d_2(u, v) = d_2(u) + d_2(v) + d(u)d(v) = 2 + 2 \times 2 = 8$.

3. Cartesian product of two $(r, 2, r(r - 1))$-regular graphs is $(2r, 2, 3r^2 - 2r)$-regular, since $d(u, v) = d(u) + d(v) = r + r = 2r$ and $d_2(u, v) = d_2(u) + d_2(v) + d(u)d(v) = r(r - 1) + r(r - 1) + r \times r = r^2 - r + r^2 - r + r^2 = 3r^2 - 2r$.

Theorem 5.5.3. Let G be a connected $(r_1, 2, k_1)$-regular graph of order n_1 and H be a connected $(r_2, 2, k_2)$-regular graph of order n_2. Then, the composition graph $G[H]$ is $(r_1n_2 + r_2, 2, (n_2(1 + k_2)) - (1 + r_2))$-regular.

Proof. Let G be a connected $(r_1, 2, k_1)$-regular graph of order n_1. Then $d(u) = r_1$ and $d_2(u) = k_1$, for all $u \in V(G)$. Let H be a connected $(r_2, 2, k_2)$-regular graph of order n_2. Then $d(v) = r_2$ and $d_2(v) = k_2$, for all $v \in V(H)$. Let $(u, v) \in V(G[H])$. Consider $d(u, v) = d(u)|V(H)| + d(v) = r_1n_2 + r_2$, for all $(u, v) \in G[H]$ and $d_2(u, v) = d_2(u)|V(H)| + |V(H)| - 1 - d(v) = k_1n_2 + n_2 - 1 - r_2$, for all $(u, v) \in G[H]$. Hence $G[H]$ is $(r_1n_2 + r_2, 2, (n_2(1 + k_1)) - (1 + r_2))$-regular. \qed

Examples

1. $K_n[K_n]$ is $(n^2 - 1, 2, 0)$-regular, since $d(u, v) = d(u)|V(H)| + d(v) = (n - 1)n + (n - 1) = n^2 - 1$ and $d_2(u, v) = d_2(u)|V(H)| + |V(H)| - 1 - d(v) = 0 + n - 1 - (n - 1) = 0$.

2. For $n \geq 5$, $C_n[C_n]$ is $(2n + 2, 2, 3n - 3)$-regular, since $d(u, v) = d(u)|V(H)| + d(v) = 2n + 2$ and $d_2(u, v) = d_2(u)|V(H)| + |V(H)| - 1 - d(v) = 2n + n - 1 - 2 = 3n - 3$.

CHAPTER 5. \(d_m\) - SPLITTING GRAPH OF A GRAPH

3. Since \(d(u,v) = d(u)|V(H)| + d(v) = rn2^{r-2} + r\) and \(d_2(u,v) = d_2(u)|V(H)| + |V(H)| - 1 - d(v) = (r^2 - r + 1)n2^{r-2} - (1 + r)\), composition of two \((r, 2, r(r-1))\)-regular graphs of order \(n2^{r-2}\) is \((rn2^{r-2} + r, 2, (r^2 - r + 1)n2^{r-2} - (1 + r))\)-regular graph.

Note 6: The join of two \((r, 2, k)\)-regular graphs need not be \((r, 2, k)\)-regular graph.

Example 5.5.4. \(C_4\) is \((2, 2, 1)\)-regular and \(K_2\) is \((1, 2, 0)\)-regular. Join of \(C_4\) and \(K_2\) is not a \((r, 2, k)\)-regular graph.

![Diagram](image.png)

Figure 5.7

Theorem 5.5.5. Let \(G\) be a connected \((r_1, 2, k_1)\)-regular graph of order \(n_1\) and \(H\) be a connected \((r_2, 2, k_2)\)-regular graph of order \(n_2\). Then the join \(G + H\) is a \((r, 2, k)\)-regular graph only when \(r_1 - r_2 = n_1 - n_2\).

Proof. Let \(G\) be a connected \((r_1, 2, k_1)\)-regular graph of order \(n_1\). Then \(d(u) = r_1\) and \(d_2(u) = k_1\), for all \(u \in V(G)\). Let \(H\) be a connected \((r_2, 2, k_2)\)-regular graph of order \(n_2\). Then \(d(v) = r_2\) and \(d_2(v) = k_2\), for all \(v \in V(H)\). The join \(G + H\) of two graphs \(G\) and \(H\) is regular only when \(d(u)\) in \(G + H = d(v)\) in \(G + H\). Then for all \(u \in V(G)\) and for all \(v \in V(H)\), \(|V(H)| + d(u) = |V(G)| + d(v)\) implies that \(n_2 + r_1 = n_1 + r_2\). Join \(G + H\) is regular only when \(n_1 - n_2 = r_1 - r_2\). The join \(G + H\) is \((2, k)\)-regular only when \(d_2(u)\) in \(G + H = d_2(v)\) in \(G + H\). Then, for all \(u \in V(G)\) and for all \(v \in V(H)\), \(|V(H)| - 1 - d(u) = |V(H)| - 1 - d(v)\) implies that \(n_1 - 1 - r_1 = n_2 - 1 - r_2\). Join \(G + H\) is \((2, k)\)-regular only when \(n_1 - n_2 = r_1 - r_2\). Join \(G + H\) is \((r, 2, k)\)-regular only when \(r_1 - r_2 = n_1 - n_2\).

Examples:

1. The join of \(K_n + K_n\) is \((2n - 1, 2, 0)\)-regular, since \(d(u) = 2n - 1\) and \(d_2(u) = 0\), for all \(u \in K_n\).
2. The join of \(C_n + C_n \) is \((n + 2, 2, n - 3)\)-regular, since \(d(u) = n + 2 \), for all \(u \) in \(C_n \) and \(d_2(u) = n - 3 \), for all \(u \) in \(C_n \).

3. Since \(d(u) = n^{2r-2} + r \) and \(d_2(u) = n^{2r-2} - r - 1 \), for all \(u \) in \((r, 2, r(r - 1))\)-regular graph, join of two \((r, 2, r(r - 1))\)-regular graphs is \((n^{2r-2} + r, 2, n^{2r-2} - r - 1)\)-regular.

5.6 \(d_m \)-Splitting Graph of a Graph

Definition 5.6.1. Let \(G \) be a graph with \(V(G) = V_1 \cup V_2 \cup V_3 \cdots \cup V_w \cup W \) where each \(V_i \) is a set having at least two vertices all having the same \(d_m \) and \(W = V - \bigcup_{i=1}^{w} V_i \). The \(d_m \)-splitting graph of \(G \) denoted by \(D_m S(G) \) is obtained from \(G \) by introducing new vertices \(u_1, u_2, \ldots, u_w \) and joining \(u_i \) to each vertex of \(V_i (1 \leq i \leq w) \) \((m, \) a positive integer)

Now, \(d_2 \)-Splitting graph of a graph is defined and few examples of \(d_2 \)-Splitting graph of a graph are given.

Definition 5.6.2. Let \(G \) be a graph with \(V(G) = V_1 \cup V_2 \cup V_3 \cdots \cup V_w \cup W \) where each \(V_i \) is a set having at least two vertices all having the same \(d_2 \) and \(W = V - \bigcup_{i=1}^{w} V_i \). The \(d_2 \)-splitting graph of \(G \) denoted by \(D_2 S(G) \) is obtained from \(G \) by introducing new vertices \(u_1, u_2, \ldots, u_w \) and joining \(u_i \) to each vertex of \(V_i (1 \leq i \leq w) \).

Example 5.6.3. Figure 5.8 and Figure 5.9 illustrate the definition 5.6.2.

(i)

![Diagram](image)

Figure 5.8

In Figure 5.8, \(V_1 = \{2, 3, 4, 5\} \), \(W = \{1\} \).
In Figure 5.9, \(V_1 = \{1, 4\}, V_2 = \{2, 3, 5\}, W = \emptyset. \)

Theorem 5.6.4. Trivial graph \(K_1 \) is the only graph such that \(K_1 = D_mS(K_1) \).

Theorem 5.6.5. For any graph \(G \neq K_1, G \) is a subgraph of \(D_mS(G) \).

Theorem 5.6.6. If \(G = K_c^n \), then \(D_mS(G) = K_{1,n} \).

Theorem 5.6.7. If \(G = W_4 \), then \(D_mS(G) = K_5 \).

Theorem 5.6.8. If \(G = K_n(n > 1) \), then \(D_mS(G) = K_{n+1} \).

Theorem 5.6.9. If \(G \) is a \((m, k)\)-regular, then \(D_mS(G) = G + K_1 \).

Theorem 5.6.10. If \(G \) is a connected graph with at least one edge, then \(D_mS(G) \) contains a cycle.

Proof. Let \(G \) be a connected graph with \(|E(G)| \geq 1 \).

Case 1 If \(G \) contains a cycle, then \(D_mS(G) \) also contains a cycle.

Case 2 Suppose \(G \) contains no cycle. Since \(G \) is a connected graph with \(|E(G)| \geq 1 \), \(G \) contains more than one vertex and hence \(G \) contains at least two vertices having the same \(d_m \).

Without loss of generality, let \(x \) and \(y \) be two vertices in \(G \) so \(d_m(x) = d_m(y) \). By definition of \(D_mS(G) \), it contains a vertex \(u \) so that \(u \) is adjacent to both \(x \) and \(y \).
Subcase 1 If \(x \) and \(y \) are adjacent, then \(u, x, y, u \) form a cycle in \(D_mS(G) \).

Subcase 2 If \(x \) and \(y \) are not adjacent, then they are connected by a path \(x = v_1, v_2, \ldots, v_n = y \). Since \(G \) is connected, \(u, v_1, \ldots, v_n, u \) is a cycle in \(D_mS(G) \).

\[\square \]

Remark 5.6.11. If \(G \) is a disconnected graph with \(|E(G)| \geq 1 \), then at least one component of \(G \) has at least one edge and is connected, then by Theorem 5.6.10, \(D_mS(G) \) contains a cycle.

Theorem 5.6.12. Let \(G \) be a graph of order \(n \) which is \((m, k)\)-regular. \(D_mS(G) \) is \((m, k)\)-regular if and only if \(G = K_n \)

Proof. Suppose \(G = K_n \). Then \(G \) is \((m, 0)\)-regular. Also, \(D_mS(G) = K_{n+1} \) which is \((m, 0)\)-regular. Conversely, suppose \(D_mS(G) \) is \((m, k)\)-regular. Suppose \(G \neq K_n \) and \(G \) is \((m, k)\)-regular. Then \(k > 0 \) and \(d_m(v) = k \neq 0 \), for all \(v \in V(G) \). Let \(u \) be the vertex of \(D_mS(G) \) which is different from all vertices of \(G \), and adjacent to all the vertices of \(G \). Then \(d_m(u) = 0 \) for \(m \geq 2 \). But for \(v \in G \) with \(v \in D_mS(G) \), \(d_m(v) \neq 0 \). This shows that \(D_mS(G) \) is not \((m, k)\)-regular for any \(k \). This contradicts the hypothesis. Hence \(G = K_n \).

\[\square \]

Theorem 5.6.13. \(D_mS(K_{n,n}) \) is a tripartite graph, \(m \geq 2 \).

Proof. Let \(V_1 = \{v_1, v_2, \ldots, v_n\} \) and \(V_2 = \{u_1, u_2, u_3, \ldots, u_n\} \) be the partition of \(V(K_{n,n}) \). Then \(d_m(v_i) = d_m(u_i) = n - 1 \), \((1 \leq i \leq n)\). By definition of \(D_mS(G) \), \(D_mS(K_{n,n}) \) contains a vertex \(u \) so that \(u \) is adjacent to all \(u_i(1 \leq i \leq n) \) and \(v_j(1 \leq j \leq n) \). Then \(u \) is adjacent to all vertices of \(K_{n,n} \). This shows that \(D_mS(K_{n,n}) \) is \(K_{1,n,n} \) and hence tripartite.

\[\square \]

Theorem 5.6.14. \(D_mS(K_{l,n}) \) with \(l \neq n \) is a tripartite graph if \(m \geq 2 \)

Proof. Let \(V_1 = \{v_1, v_2, \ldots, v_l\} \) and \(V_2 = \{u_1, u_2, u_3, \ldots, u_n\} \) be the partition of \(V(K_{l,n}) \). Then \(d_m(v_i) = 0 \), \((1 \leq i \leq l)\). \(d_m(u_j) = 0 \), \((1 \leq j \leq n)\). By definition of \(D_mS(G) \), \(D_mS(K_{l,n}) \) contains a vertex \(u \) such that \(u \) is adjacent to all \(u_i(1 \leq i \leq n) \) and \(v_j(1 \leq j \leq l) \). Then \(u \) is adjacent with all vertices of \(K_{l,n} \). This shows that \(D_mS(K_{l,n}) \) is \(K_{1,l,n} \) and hence tripartite.

\[\square \]

Theorem 5.6.15. If \(G \) is an Eulerian graph, then \(D_mS(G) \) is not an Eulerian graph.
Proof. Let \(G \) be an Eulerian graph. Since \(G \) is an Eulerian graph, each vertex in \(G \) is of even degree. Hence \(G \) contains at least two vertices having the same \(d_m \). Let \(x \) and \(y \) be two vertices in \(G \) such that \(d_m(x) = d_m(y) \). By definition of \(D_mS(G) \), there exits a vertex \(u \) which is adjacent to both \(x \) and \(y \). Hence the degree of \(x \) in \(D_mS(G) = (\text{degree of } x \text{ in } G) + 1 = \text{even} + 1 = \text{odd} \). Hence \(D_mS(G) \) is not an Eulerian graph.

Theorem 5.6.16. For any graph \(G \), \(\omega(D_mS(G)) \leq \omega(G) \), where \(\omega(G) \) denotes the number of components of \(G \).

Proof. Case 1 If \(G \) is a connected graph, then \(D_mS(G) \) is connected. Hence \(\omega(G) = 1 = \omega(D_mS(G)) \).

Case 2 If \(G \) is a disconnected graph, then \(G \) has more than one component. It is sufficient to prove the theorem by assuming that \(G \) has only two components \(G_1 \) and \(G_2 \). Let \(x \in V(G_1) \) and \(y \in V(G_2) \) such that \(d_m(x) = d_m(y) \) (This is possible since \(G_1 \) and \(G_2 \) are connected graphs. By definition of \(D_mS(G) \), there exists a vertex \(u \) so that \(u \) is adjacent to both \(x \) and \(y \). Hence \(\omega(D_mS(G)) = 1 < \omega(G) \). Suppose either \(x \) and \(y \) are in \(V(G_1) \) (or) \(x \) and \(y \) are in \(V(G_2) \) then \(\omega(D_mS(G)) = 2 = \omega(G) \). Hence \(\omega(D_mS(G)) \leq \omega(G) \).

5.7 \(d_2 \)-Splitting Graph of a Graph

A few properties of \(d_2 \)-splitting graph of a graph are discussed here[35].

Definition 5.7.1. Consider \(P_n \) \((n \geq 6)\) and two new vertices \(u \) and \(v \) on either side of \(P_n \). Join the vertex \(v \) to first two vertices from the left and last two vertices of \(P_n \) from the right. Join the vertex \(u \) to the remaining vertices of \(P_n \) in the middle. The resulting graph is called Shipping graph and is denoted by \(SP_n \).

Example 5.7.2. For a path on 6 vertices, the Shipping graph \(SP_6 \) is shown in Figure 5.10.
Theorem 5.7.3. If $G = P_n(n \geq 6)$, then $D_2S(G) = SP_n$.

Theorem 5.7.4. If $G = C_n$, then $D_2S(G) = W_n$.

Example 5.7.5. Figure 5.11 illustrates D_2S(Petersen graph)

Theorem 5.7.6. Let G be a bipartite graph with bipartition (V_1, V_2), where $V_1 = \{v_1, v_2, \ldots, v_m\}$ and $V_2 = \{v_1^1, v_2^1, \ldots, v_n^1\}$. If there is a pair of vertices v_i and v_j^1 so that the length of the $v_i - v_j^1$ path is odd and $d_2(v_i) = d_2(v_j^1)$, then $D_2S(G)$ is not bipartite. Also, if there is no pair of vertices v_i and v_j^1 so that $d_2(v_i) = d_2(v_j^1)$, then $D_2S(G)$ is bipartite.

Theorem 5.7.7. $D_2S(K_{m,n})$ is a bipartite graph if and only if $m \neq n$.

Proof. Let $V_1 = \{v_1, v_2, \ldots, v_m\}$ and $V_2 = \{v_1^1, v_2^1, \ldots, v_n^1\}$ are the partition of $V(K_{m,n})$. Then $d_2(v_i) = m - 1$, $(1 \leq i \leq m)$ and $d_2(v_j^1) = n - 1$, $(1 \leq j \leq n)$. Suppose $m \neq n$. Then $m - 1 \neq n - 1$. Hence there is no pair v_i and v_j^1 such that $d_2(v_i) = d_2(v_j^1)$, $(1 \leq i \leq m)$ and $(1 \leq i \leq n)$. Let $V(D_2S(K_{m,n})) \setminus V(K_{m,n}) = \{u_1, u_2\}$. Let u_1 be adjacent to every vertex in V_2 and u_2 be adjacent
to every vertex in V_1. Clearly, $(V_1 \cup \{u_1\}, V_2 \cup \{u_2\})$ is a bipartition of $D_2S(K_{m,n})$. Hence $D_2S(K_{m,n})$ is a bipartite graph when $m \neq n$.

Conversely, let $D_2S(K_{m,n})$ be a bipartite graph. Suppose $m = n$, then $m-1 = n-1$. (i.e) $d_2(v) = m-1$, for all $v \in K_{m,n}$. Hence there exists a pair of adjacent vertices v_i and v_j such that $d_2(v_i) = d_2(v_j')$. By definition of $D_2S(K_{m,n})$, there exists a vertex u which is adjacent to both v_i and v_j'. Then $D_2S(K_{m,n})$ will contain the odd cycle $u_1v_iv_j'u_1$. This implies $D_2S(K_{m,n})$ is not a bipartite graph, which is a contradiction. Hence $m \neq n$. \hfill \square

Theorem 5.7.8. Let G be a graph with p vertices and q edges and let s be the number of vertices in W. Then $|E(D_2S(G))| = p + q - s$ where W is as in Definition 5.6.2.

Proof. Let $V(G) = \{v_1, v_2, v_3, \ldots, v_p\}$ and $V(D_2S(G)) = \{u_1, u_2, u_3, \ldots, u_s\}$. Let $d'(v)$-denote the degree of a vertex v in $D_2S(G)$ (clearly $d'(v) \geq d(v)$, for all v in G).

$$|E(D_2S(G))| = \frac{1}{2} \sum d'(v) = \frac{1}{2} \left[\sum_{i=1}^{p} (d(v_i) + 1) - s + p - s \right] = p + q - s. \hfill \square$$

Remark 5.7.9. If G is a $(2,k)$-regular graph, then $|E(D_2S(G))| = p + q$.

Theorem 5.7.10. $D_2S(K_{n,n})$ is a Hamiltonian graph.

Proof. For $n \geq 1$, the number of vertices in $D_2S(K_{n,n}) = 2n + 1 = p \geq 3$. The minimum degree of the graph $D_2S(K_{n,n})$ is $n + 1$ and $p = 2n + 1$ and $\delta = n + 1$. Hence $\delta \geq \frac{p}{2}$. By Dirac’s theorem, $D_2S(K_{n,n})$ is a Hamiltonian graph. \hfill \square

Theorem 5.7.11. $D_2S(K_{m,n})$ is a Non-Hamiltonian graph if $m \neq n$.

Proof. Let $V_1 = \{v_1, v_2, \ldots, v_m\}$ and $V_2 = \{u_1, u_2, u_3, \ldots, u_n\}$ are the partition of $V(K_{m,n})$. Assume $m < n$. Let $V(D_2S(K_{m,n})) = \{V_1 \cup \{u_1\}\} \cup \{V_2 \cup \{u_2\}\}, u_1$ is adjacent with all the vertices of V_2 and u_2 is adjacent to all the vertices of V_1. Then $|V_1 \cup \{u_1\}| = m + 1, |V_2 \cup \{u_2\}| = n + 1$. $(\omega(D_2S(K_{m,n})) - \{V_1 \cup \{u_1\}\}) = n + 1 > m + 1 = |V_1 \cup \{u_1\}|$. Hence $D_2S(K_{m,n})$ is Non-Hamiltonian. \hfill \square

Note 5.7.12. $D_2S(G)$ of a disconnected graph G may be connected. For instance, let G be a graph with two components G_1 and G_2 such that G_1 and G_2 are $(2,k)$-regular and each vertex of G_1 and G_2 have same d_2. By definition of
$D_2S(G)$, there exists a vertex which is adjacent to all the vertices of G_1 and G_2 and hence $D_2S(G)$ is connected.

Theorem 5.7.13. Let G be a connected graph. Then $\kappa(D_2S(G)) \geq \kappa(G)$.

Proof. Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, v_3, \ldots, v_n\}$. Let $V(D_2S(G)) - V(G) = \{u_1, u_2, u_3, \ldots, u_w\}$. Since G is a connected graph with more than two vertices, G contains at least two vertices having same d_2 and they are connected by a path. Let v_i and v_j be the vertices of G such that $d_2(v_i) = d_2(v_j)$ and v_i and v_j are connected by a path. Suppose G is k-connected. Let $S = \{v_1, v_2, v_3, \ldots, v_k\}$ be the minimum vertex cut of G. Since $G - S$ is disconnected, $G - S$ has at least two components. Take two components G_1 and G_2.

Case 1 Suppose v_i and v_j are in the same component. Then $\kappa(D_2S(G)) = \kappa(G)$.

Case 2 Suppose v_i and v_j belong to different components. Without loss of generality, let $v_i \in G_1$ and $v_j \in G_2$. Then there is no v_i-v_j path in $G - S$. But v_i and v_j are connected by a path $v_i u_i v_j$ in $(D_2S(G) - S)$. That is, $D_2S(G) - S$ is connected. Hence $\kappa(D_2S(G)) \geq \kappa(G)$.

Conclusion and Scope: For further investigation, the following open problems are suggested.

1. d_m ($m > 2$) of vertex in the graph product may be investigated.

2. The nature of the graph product other than Cartesian, Composition and Join on $(r, 2, k)$-regular graphs may be investigated.

3. d_m-Splitting graph $D_mS(G)$, for $m > 2$ may be investigated.