CHAPTER - 2

ANTI S-FUZZY SUBHEMIRINGS OF A HEMIRING

2.1 Introduction: In this chapter, we introduce the concept of anti S-fuzzy subhemirings of a hemiring and establish some results on these. We also made an attempt to study the properties of anti S-fuzzy subhemirings of hemiring under homomorphism and anti-homomorphism.

2.1.1 Definition: A S-norm is a binary operation $S: [0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following requirements;

(i) $S(0, x) = x$, $S(1, x) = 1$ (boundary condition)

(ii) $S(x, y) = S(y, x)$ (commutativity)

(iii) $S(x, S(y, z)) = S(S(x, y), z)$ (associativity)

(iv) if $x \leq y$ and $w \leq z$, then $S(x, w) \leq S(y, z)$ (monotonicity).

2.1.2 Definition: Let $(R, +, .)$ be a hemiring. A fuzzy subset A of R is said to be an anti S-fuzzy subhemiring (anti fuzzy subhemiring with respect to S-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x + y) \leq S(\mu_A(x), \mu_A(y))$,

(ii) $\mu_A(xy) \leq S(\mu_A(x), \mu_A(y))$, for all x and $y \in R$.

2.1.3 Definition: Let $(R, +, .)$ be a hemiring. An anti S-fuzzy subhemiring A of R is said to be an anti S-fuzzy normal subhemiring (ASFNSHR) of R if $\mu_A(xy) = \mu_A(yx)$, for all x and $y \in R$.
2.1.4 Definition: Let A and B be fuzzy subsets of sets G and H, respectively. The anti-product of A and B, denoted by $A \times B$, is defined as $A \times B = \{ (x, y), \mu_{A \times B}(x,y) \}$ / for all $x \in G$ and $y \in H \}$, where $\mu_{A \times B}(x, y) = \max \{ \mu_A(x), \mu_B(y) \}$.

2.1.5 Definition: Let A be a fuzzy subset in a set S, the anti-strongest fuzzy relation on S, that is a fuzzy relation on A is V given by $\mu_V(x, y) = \max \{ \mu_A(x), \mu_A(y) \}$, for all x and $y \in S$.

2.1.6 Definition: An anti S-fuzzy subhemiring A of a hemiring R is called an anti S-fuzzy characteristic subhemiring of R if $\mu_A(x) = \mu_A(f(x))$, for all $x \in R$ and f in Aut (R).

2.1.7 Definition: Let R and R^l be any two hemirings. Let $f : R \rightarrow R^l$ be any function and A be an anti S-fuzzy subhemiring in R, V be an anti S-fuzzy subhemiring in $f(R) = R^l$, defined by $\mu_V(y) = \inf_{x \in f^{-1}(y)} \mu_A(x)$, for all $x \in R$, $y \in R^l$.

Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

Note: This definition is used throughout this chapter for image and preimage in functions.

2.1.8 Definition: Let A be an anti S-fuzzy subhemiring of a hemiring $(R, +, .)$ and a in R. Then the pseudo anti S-fuzzy coset $(aA)^p$ is defined by $(a \mu_A)^p(x) = p(a) \mu_A(x)$, for every x in R and for some $p \in P$.

2.1.9 Definition: Let A be a fuzzy subset of X. For α in $[0, 1]$, the lower level subset of A is the set $A_\alpha = \{ x \in X : \mu_A(x) \leq \alpha \}$.

2.1.10 Definition: Let A be an anti S-fuzzy subhemiring of a hemiring R. Then A^0 is defined as $A^0(x) = A(x)A(0)$, for all x in R, where $A(0) \neq 0$.

2.2 - PROPERTIES OF ANTI S-FUZZY SUBHEMIRING OF A HEMIRING

2.2.1 Theorem: Union of any two anti S-fuzzy subhemiring of a hemiring R is an anti S-fuzzy subhemiring of R.

Proof: Let A and B be any two anti S-fuzzy subhemirings of a hemiring R and x and y in R. Let \(A = \{(x, \mu_A(x)) / x \in R\}\) and \(B = \{(x, \mu_B(x)) / x \in R\}\) and also let \(C = A \cup B = \{(x, \mu_C(x)) / x \in R\}\), where \(\max\{\mu_A(x), \mu_B(x)\} = \mu_C(x)\).

Now, \(\mu_C(x+y) = \max\{\mu_A(x+y), \mu_B(x+y)\}\)

\[\leq \max\{S(\mu_A(x), \mu_A(y)), S(\mu_B(x), \mu_B(y))\}\]

\[\leq S\{S(\mu_A(x), \mu_B(x)), S(\mu_A(y), \mu_B(y))\}\]

\[= S(\mu_C(x), \mu_C(y))\].

Therefore, \(\mu_C(x+y) \leq S(\mu_C(x), \mu_C(y))\), for all \(x, y \in R\).

And, \(\mu_C(xy) = \max\{\mu_A(xy), \mu_B(xy)\}\)

\[\leq \max\{S(\mu_A(x), \mu_A(y)), S(\mu_B(x), \mu_B(y))\}\]

\[\leq S\{S(\mu_A(x), \mu_B(x)), S(\mu_A(y), \mu_B(y))\}\]

\[= S(\mu_C(x), \mu_C(y))\].

Therefore, \(\mu_C(xy) \leq S(\mu_C(x), \mu_C(y))\), for all \(x, y \in R\).

Therefore C is an anti S-fuzzy subhemiring of a hemiring R.

Hence the union of any two anti S-fuzzy subhemirings of a hemiring R is an anti S-fuzzy subhemiring of R. \[\Box\]

2.2.2 Theorem: The union of a family of anti S-fuzzy subhemirings of hemiring R is an anti S-fuzzy subhemiring of R.

Proof: The argument is trivial.
2.2.3 **Theorem:** If A and B are any two anti S-fuzzy subhemirings of the hemirings R_1 and R_2 respectively, then anti-product $A \times B$ is an anti S-fuzzy subhemiring of $R_1 \times R_2$.

Proof: Let A and B be two anti S-fuzzy subhemirings of the hemirings R_1 and R_2 respectively. Let x_1 and x_2 be in R_1, y_1 and y_2 be in R_2.

Then (x_1, y_1) and (x_2, y_2) are in $R_1 \times R_2$.

Now, $\mu_{A \times B} ((x_1, y_1) + (x_2, y_2)) = \mu_{A \times B} (x_1 + x_2, y_1 + y_2)$

\[= \max \{ \mu_A(x_1 + x_2), \mu_B(y_1 + y_2) \} \]

\[\leq \max \{ S (\mu_A(x_1), \mu_A(x_2)), S (\mu_B(y_1), \mu_B(y_2)) \} \]

\[\leq S (S (\mu_A(x_1), \mu_B(y_1)), S (\mu_A(x_2), \mu_B(y_2))) \]

\[= S (\mu_{A \times B} (x_1, y_1), \mu_{A \times B} (x_2, y_2)). \]

Therefore, $\mu_{A \times B} ((x_1, y_1) + (x_2, y_2)) \leq S (\mu_{A \times B} (x_1, y_1), \mu_{A \times B} (x_2, y_2))$.

Also, $\mu_{A \times B} ((x_1, y_1)(x_2, y_2)) = \mu_{A \times B} (x_1x_2, y_1y_2)$

\[= \max \{ \mu_A(x_1x_2), \mu_B(y_1y_2) \} \]

\[\leq \max \{ S (\mu_A(x_1), \mu_A(x_2)), S (\mu_B(y_1), \mu_B(y_2)) \} \]

\[\leq S (S (\mu_A(x_1), \mu_B(y_1)), S (\mu_A(x_2), \mu_B(y_2))) \]

\[= S (\mu_{A \times B} (x_1, y_1), \mu_{A \times B} (x_2, y_2)). \]

Therefore, $\mu_{A \times B} ((x_1, y_1)(x_2, y_2)) \leq S (\mu_{A \times B} (x_1, y_1), \mu_{A \times B} (x_2, y_2))$.

Hence $A \times B$ is an anti S-fuzzy subhemiring of hemiring of $R_1 \times R_2$.

2.2.4 **Theorem:** If A is an anti S-fuzzy subhemiring of a hemiring $(R, +, \cdot)$, then $\mu_A(x) \geq \mu_A(0)$, for $x \in R$, the zero $0 \in R$.

Proof: For $x \in R$, and 0 is the zero element of R.
Now, \(\mu_A(x) = \mu_A(x+0) \leq S(\mu_A(x), \mu_A(0)) \), for all \(x \in \mathbb{R} \).

So, \(\mu_A(x) \geq \mu_A(0) \) is only possible.

2.2.5 Theorem: Let \(A \) and \(B \) be anti S-fuzzy subhemiring of the hemirings \(R_1 \) and \(R_2 \) respectively. Suppose that \(0_1 \) and \(0_2 \) are the zero elements of \(R_1 \) and \(R_2 \) respectively. If \(A \times B \) is an anti S-fuzzy subhemiring of \(R_1 \times R_2 \), then at least one of the following two statements must hold.

(i) \(\mu_B(0_2) \leq \mu_A(x) \), for all \(x \in R_1 \),

(ii) \(\mu_A(0_1) \leq \mu_B(y) \), for all \(y \in R_2 \).

Proof: Let \(A \times B \) be an anti S-fuzzy subhemiring of \(R_1 \times R_2 \).

By contraposition, suppose that none of the statements (i) and (ii) holds.

Then we can find an element \(a \in R_1 \) and \(b \in R_2 \) such that \(\mu_A(a) < \mu_B(0_2) \) and \(\mu_B(b) < \mu_A(0_1) \).

We have, \(\mu_{A \times B}(a, b) = \max\{\mu_A(a), \mu_B(b)\} \)

\[< \max\{\mu_B(0_2), \mu_A(0_1)\}\]

\[= \max\{\mu_A(0_1), \mu_B(0_2)\}\]

\[= \mu_{A \times B}(0_1, 0_2).\]

Thus \(A \times B \) is not an anti S-fuzzy subhemiring of \(R_1 \times R_2 \).

Hence either \(\mu_B(0_2) \leq \mu_A(x) \), \(x \in R_1 \) or \(\mu_A(0_1) \leq \mu_B(y) \), for all \(y \in R_2 \).

2.2.6 Theorem: Let \(A \) and \(B \) be two fuzzy subsets of the hemirings \(R_1 \) and \(R_2 \) respectively. If \(A \times B \) is an anti S-fuzzy subhemiring of \(R_1 \times R_2 \). Then the following are true:

i. if \(\mu_A(x) \geq \mu_B(0_2) \), then \(A \) is an anti S-fuzzy subhemiring of \(R_1 \).
ii. if \(\mu_B(x) \geq \mu_A(0) \), then B is an anti S-fuzzy subhemiring of \(R_2 \).

iii. either A is an anti S-fuzzy subhemiring of \(R_1 \) or B is an anti S-fuzzy subhemiring of \(R_2 \).

Proof: Let \(A \times B \) be an anti S-fuzzy subhemiring of \(R_1 \times R_2 \) and

\(x \) and \(y \in R_1 \) and \(0_2 \in R_2 \). Then \((x, 0_2) \) and \((y, 0_2) \in R_1 \times R_2 \).

Now, using the property that \(\mu_A(x) \geq \mu_B(0_2) \), for all \(x \in R_1 \).

We get,

\[
\mu_A(x+y) = \max\{ \mu_A(x+y), \mu_B(0_2+0_2) \}
\]

\[
= \mu_{A \times B}((x+y), (0_2+0_2))
\]

\[
= \mu_{A \times B}((x, 0_2)+(y, 0_2))
\]

\[
\leq S(\mu_{A \times B}(x, 0_2), \mu_{A \times B}(y, 0_2))
\]

\[
= S(\max\{ \mu_A(x), \mu_B(0_2) \}, \max\{ \mu_A(y), \mu_B(0_2) \})
\]

\[
= S(\mu_A(x), \mu_A(y)).
\]

Therefore, \(\mu_A(x+y) \leq S(\mu_A(x), \mu_A(y)) \), for all \(x \) and \(y \in R_1 \).

Also, \(\mu_A(xy) = \max\{ \mu_A(xy), \mu_B(0_20_2) \} \)

\[
= \mu_{A \times B}((xy), (0_20_2))
\]

\[
= \mu_{A \times B}((x, 0_2)(y, 0_2))
\]

\[
\leq S(\mu_{A \times B}(x, 0_2), \mu_{A \times B}(y, 0_2))
\]

\[
= S(\max\{ \mu_A(x), \mu_B(0_2) \}, \max\{ \mu_A(y), \mu_B(0_2) \})
\]

\[
= S(\mu_A(x), \mu_A(y)).
\]

Therefore, \(\mu_A(xy) \leq S(\mu_A(x), \mu_A(y)) \), for all \(x \) and \(y \in R_1 \).

Hence A is an anti S-fuzzy subhemiring of \(R_1 \). Thus (i) is proved.

Now, \(\mu_B(x) \geq \mu_A(0) \), for all \(x \in R_2 \).
let x and y in R_2 and 0_1 in R_1. Then $(0_1, x)$ and $(0_1, y)$ are $\in R_1 \times R_2$.

We get, $\mu_B(x+y) = \max\{ \mu_B(x+y), \mu_A(0_1 + 0_1) \}$

$$= \max\{ \mu_A(0_1 + 0_1), \mu_B(x+y) \}$$

$$= \mu_{A \times B}(0_1 + 0_1, (x+y))$$

$$= \mu_{A \times B}[(0_1, x) + (0_1, y)]$$

$$\leq S(\mu_{A \times B}(0_1, x), \mu_{A \times B}(0_1, y))$$

$$= S(\max\{\mu_A(0_1), \mu_B(x)\}, \max\{\mu_A(0_1), \mu_B(y)\})$$

$$= S(\mu_B(x), \mu_B(y)).$$

Therefore, $\mu_B(x+y) \leq S(\mu_B(x), \mu_B(y))$, for all x and $y \in R_2$.

Also, $\mu_B(xy) = \max\{ \mu_B(xy), \mu_A(0_1 0_1) \}$

$$= \max\{\mu_A(0_1 0_1), \mu_B(xy)\}$$

$$= \mu_{A \times B}(0_1 0_1, (xy))$$

$$= \mu_{A \times B}[(0_1, x)(0_1, y)]$$

$$\leq S(\mu_{A \times B}(0_1, x), \mu_{A \times B}(0_1, y))$$

$$= S(\max\{\mu_A(0_1), \mu_B(x)\}, \max\{\mu_A(0_1), \mu_B(y)\})$$

$$= S(\mu_B(x), \mu_B(y)).$$

Therefore, $\mu_B(xy) \leq S(\mu_B(x), \mu_B(y))$, for all x and $y \in R_2$.

Hence B is an anti S-fuzzy subhemiring of a hemiring R_2.

Thus (ii) is proved. (iii) is clear.

\[\square \]

2.2.7 Theorem: Let A be a fuzzy subset of a hemiring R and V be the anti-strongest fuzzy relation of R. Then A is an anti S-fuzzy subhemiring of R if and only if V is an anti S-fuzzy subhemiring of $R \times R$.

Proof: Suppose that A is an anti S-fuzzy subhemiring of a hemiring R.

Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2) \in R \times R$, we have,

$$\mu_V(x+y) = \mu_V[(x_1, x_2) + (y_1, y_2)]$$

$$= \mu_V(x_1 + y_1, x_2 + y_2)$$

$$= \max \{ \mu_A(x_1 + y_1), \mu_A(x_2 + y_2) \}$$

$$\leq \max \{ S(\mu_A(x_1), \mu_A(y_1)), S(\mu_A(x_2), \mu_A(y_2)) \}$$

$$\leq S(\max \{ \mu_A(x_1), \mu_A(x_2) \}, \max \{ \mu_A(y_1), \mu_A(y_2) \})$$

$$= S(\mu_V(x_1, x_2), \mu_V(y_1, y_2))$$

$$= S(\mu_V(x), \mu_V(y)).$$

Therefore, $\mu_V(x+y) \leq S(\mu_V(x), \mu_V(y))$, for all x and $y \in R \times R$.

Also, $\mu_V(xy) = \mu_V[(x_1, x_2)(y_1, y_2)]$

$$= \mu_V(x_1 y_1, x_2 y_2)$$

$$= \max \{ \mu_A(x_1 y_1), \mu_A(x_2 y_2) \}$$

$$\leq \max \{ S(\mu_A(x_1), \mu_A(y_1)), S(\mu_A(x_2), \mu_A(y_2)) \}$$

$$\leq S(\max \{ \mu_A(x_1), \mu_A(x_2) \}, \max \{ \mu_A(y_1), \mu_A(y_2) \})$$

$$= S(\mu_V(x_1, x_2), \mu_V(y_1, y_2))$$

$$= S(\mu_V(x), \mu_V(y)).$$

Therefore, $\mu_V(xy) \leq S(\mu_V(x), \mu_V(y))$, for all x and $y \in R \times R$.

This proves that V is an anti S-fuzzy subhemiring of $R \times R$.

Conversely assume that V is an anti S-fuzzy subhemiring of $R \times R$, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2) \in R \times R$, we have

$$\max \{ \mu_A(x_1 + y_1), \mu_A(x_2 + y_2) \} = \mu_V(x_1 + y_1, x_2 + y_2)$$

29
= \mu_V [(x_1, x_2) + (y_1, y_2)] = \mu_V (x + y)

\leq S (\mu_V (x), \mu_V (y)) = S (\mu_V (x_1, x_2), \mu_V (y_1, y_2))

= S (\max \{ \mu_A(x_1), \mu_A(x_2) \}, \max \{ \mu_A(y_1), \mu_A(y_2) \}).

If x_2 = 0, y_2 = 0, we get, \mu_A(x_1+y_1) \leq S (\mu_A(x_1), \mu_A(y_1)), \text{ for all } x_1 \text{ and } y_1 \in R.

and, \max \{ \mu_A(x_1y_1), \mu_A(x_2y_2) \} = \mu_V (x_1y_1, x_2y_2)

= \mu_V [(x_1, x_2) (y_1, y_2)] = \mu_V (x y)

\leq S (\mu_V (x), \mu_V (y)) = S (\mu_V (x_1, x_2), \mu_V (y_1, y_2))

= S (\max \{ \mu_A(x_1), \mu_A(x_2) \}, \max \{ \mu_A(y_1), \mu_A(y_2) \}).

Therefore A is an anti S-fuzzy subhemiring of R.

\[\square\]

2.2.8 Theorem: If A is an anti S-fuzzy subhemiring of a hemiring (R, +, .),
then H = \{ x / x \in R: \mu_A(x) = 0 \} is either empty or is a subhemiring of R.

Proof: The argument is trivial.

2.2.9 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring (R, +, .).

If \mu_A(x+y) = 1, then either \mu_A(x) = 1 or \mu_A(y) = 1, \text{ for all } x \text{ and } y \in R.

Proof: The argument is trivial.

In the next theorem, we use composition operation in S- fuzzy subhemiring

2.2.10 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring H and
f is an isomorphism from a hemiring R onto H. Then A \circ f is an anti S-fuzzy subhemiring of R.

Proof: Let x, y in R and A be an anti S-fuzzy subhemiring of a hemiring H.

Then we have, (\mu_A \circ f)(x+y) = \mu_A (f(x+y)) = \mu_A(f(x) + f(y))

\leq S (\mu_A(f(x)), \mu_A(f(y))) \leq S ((\mu_A \circ f)(x)), (\mu_A \circ f) (y)),
which implies that \((\mu_{A^f})(x+y) \leq S ((\mu_{A^f})(x), (\mu_{A^f})(y))\).

And, \((\mu_{A^f})(xy) = \mu_A(f(xy)) = \mu_A(f(x)f(y)) \)

\[\leq S (\mu_A(f(x)), \mu_A(f(y))), \]

which implies that \((\mu_{A^f})(xy) \leq S ((\mu_{A^f})(x), (\mu_{A^f})(y))\).

Therefore \((A^f)\) is an anti S-fuzzy subhemiring of a hemiring \(R\).

2.2.11 Theorem: Let \(A\) be an anti S-fuzzy subhemiring of a hemiring \(H\) and \(f\) is an anti S-isomorphism from a hemiring \(R\) onto \(H\). Then \(A^f\) is an anti S-fuzzy subhemiring of \(R\).

Proof: Let \(x, y\) in \(R\) and \(A\) be an anti S-fuzzy subhemiring of a hemiring \(H\). Then we have, \((\mu_{A^f})(x+y) = \mu_A(f(x+y))\)

\[= \mu_A(f(y)+f(x)), \text{ as } f \text{ is an anti-isomorphism} \]

\[\leq S (\mu_A(f(x)), \mu_A(f(y))), \]

\[\leq S ((\mu_{A^f})(x), (\mu_{A^f})(y)), \]

which implies that \((\mu_{A^f})(x+y) \leq S ((\mu_{A^f})(x), (\mu_{A^f})(y))\).

Now, \((\mu_{A^f})(xy) = \mu_A(f(xy)) = \mu_A(f(y)f(x))\)

\[\leq S (\mu_A(f(x)), \mu_A(f(y))), \]

\[\leq S ((\mu_{A^f})(x), (\mu_{A^f})(y)), \]

which implies that \((\mu_{A^f})(xy) \leq S ((\mu_{A^f})(x), (\mu_{A^f})(y))\).

Therefore \(A^f\) is an anti S-fuzzy subhemiring of a hemiring \(R\).

2.2.12 Theorem: Let \(A\) be an anti S-fuzzy subhemiring of a hemiring \((R, +, \cdot)\), then the pseudo anti S-fuzzy coset \((aA)^p\) is an anti S-fuzzy subhemiring of a hemiring \(R\), for every \(a\) in \(R\).
Proof: Let A be an anti S-fuzzy subhemiring of a hemiring R.

For every x and y in R, we have,
\[
((a\mu_A)^p)(x+y) = p(a)\mu_A(x+y) \leq p(a) S ((a\mu_A)(x), (a\mu_A)(y)) = S (((a\mu_A)^p)(x), ((a\mu_A)^p)(y)).
\]
Therefore,
\[
((a\mu_A)^p)(x+ y) \leq S (((a\mu_A)^p)(x), ((a\mu_A)^p)(y)).
\]

Now,
\[
((a\mu_A)^p)(xy) = p(a)\mu_A(xy) \leq p(a) S (\mu_A(x), \mu_A(y)) = S (p(a)\mu_A(x), p(a)\mu_A(y)) = S (((a\mu_A)^p)(x), ((a\mu_A)^p)(y)).
\]
Therefore,
\[
((a\mu_A)^p)(xy) \leq S (((a\mu_A)^p)(x), ((a\mu_A)^p)(y)).
\]

Hence $(aA)^p$ is an anti S-fuzzy subhemiring of a hemiring R.

2.2.13 Theorem: Let $(R, +, \cdot)$ and $(R^l, +, \cdot)$ be any two hemirings. The homomorphic image of an anti S-fuzzy subhemiring of R is an anti S-fuzzy subhemiring of R^l.

Proof: Let $(R, +, \cdot)$ and $(R^l, +, \cdot)$ be any two hemirings. Let $f : R \to R^l$ be a homomorphism. Then, $f(x+y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $V = f(A)$, where A is an anti S-fuzzy subhemiring of R. We have to prove that V is an anti S-fuzzy subhemiring of R^l. Now, for $f(x)$, $f(y)$ in R^l, $\mu_v(f(x) + f(y)) = \mu_v(f(x+y))$, as f is a homomorphism
\[
\leq \mu_A(x+y) \leq S (\mu_A(x), \mu_A(y)),
\]
which implies that $\mu_v(f(x) + f(y)) \leq S (\mu_v(f(x)), \mu_v(f(y)))$.

Again, $\mu_v(f(x)f(y)) = \mu_v(f(xy))$, as f is a homomorphism
\[
\leq \mu_A(xy) \leq S (\mu_A(x), \mu_A(y)),
\]
which implies that \(\mu_v(f(x)f(y)) \leq S (\mu_v(f(x)), \mu_v(f(y))) \).

Hence \(V \) is an anti S-fuzzy subhemiring of \(R^l \). \(\square \)

2.2.14 Theorem: Let \((R, +, .) \) and \((R^l, +, .) \) be any two hemirings. The homomorphic preimage of an anti S-fuzzy subhemiring of \(R^l \) is an anti S-fuzzy subhemiring of \(R \).

Proof: Let \((R, +, .) \) and \((R^l, +, .) \) be any two hemirings. Let \(f : R \to R^l \) be a homomorphism. Then, \(f(x+y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \), for all \(x \) and \(y \in R \). Let \(V = f(A) \), where \(V \) is an anti S-fuzzy subhemiring of \(R^l \). We have to prove that \(A \) is an anti S-fuzzy subhemiring of \(R \). Let \(x \) and \(y \in R \).

Then, \(\mu_A(x + y) = \mu_v(f(x + y)) \), since \(\mu_v(f(x)) = \mu_A(x) \)

\[
= \mu_v(f(x) + f(y)), \text{ as } f \text{ is a homomorphism }
\]

\[
\leq S (\mu_v(f(x)), \mu_v(f(y)))
\]

\[
= S (\mu_A(x), \mu_A(y)), \text{ since } \mu_v(f(x)) = \mu_A(x)
\]

which implies that \(\mu_A(x + y) \leq S (\mu_A(x), \mu_A(y)) \).

Again, \(\mu_A(xy) = \mu_v(f(xy)) \), since \(\mu_v(f(x)) = \mu_A(x) \)

\[
= \mu_v(f(x)f(y)), \text{ as } f \text{ is a homomorphism }
\]

\[
\leq S (\mu_v(f(x)), \mu_v(f(y)))
\]

\[
= S (\mu_A(x), \mu_A(y)), \text{ since } \mu_v(f(x)) = \mu_A(x)
\]

which implies that \(\mu_A(xy) \leq S (\mu_A(x), \mu_A(y)) \).

Hence \(A \) is an anti S-fuzzy subhemiring of \(R \). \(\square \)
2.2.15 Theorem: Let \((R, +, .)\) and \((R^l, +, .)\) be any two hemirings. The anti-homomorphic image of an anti S-fuzzy subhemiring of \(R\) is an anti S-fuzzy subhemiring of \(R^l\).

Proof: Let \((R, +, .)\) and \((R^l, +, .)\) be any two hemirings. Let \(f : R \to R^l\) be an anti-homomorphism. Then, \(f(x+y) = f(y) + f(x)\) and \(f(xy) = f(y) f(x)\), for all \(x\) and \(y\) in \(R\). Let \(V = f(A)\), where \(A\) is an anti S-fuzzy subhemiring of \(R\). We have to prove that \(V\) is an anti S-fuzzy subhemiring of \(R^l\).

Now, for \(f(x), f(y)\) in \(R^l\),
\[
\mu_V(f(x) + f(y)) \leq S(\mu_A(y+x), \mu_A(x))
\]
\[
= S(\mu_A(x), \mu_A(y)),
\]
which implies that
\[
\mu_V(f(x) + f(y)) \leq S(\mu_A(f(x)), \mu_A(f(y))).
\]
Again, \(\mu_V(f(x)f(y)) = \mu_V(f(xy))\), as \(f\) is an anti-homomorphism
\[
\leq \mu_A(yx) \leq S(\mu_A(y), \mu_A(x))
\]
\[
= S(\mu_A(x), \mu_A(y)),
\]
which implies that
\[
\mu_V(f(x)f(y)) \leq S(\mu_V(f(x)), \mu_V(f(y))).
\]
Hence \(V\) is an anti S-fuzzy subhemiring of \(R^l\).

2.2.16 Theorem: Let \((R, +, .)\) and \((R^l, +, .)\) be any two hemirings. The anti-homomorphic preimage of an anti S-fuzzy subhemiring of \(R^l\) is an anti S-fuzzy subhemiring of \(R\).

Proof: Let \((R, +, .)\) and \((R^l, +, .)\) be any two hemirings. Let \(f : R \to R^l\) be an anti-homomorphism. Then, \(f(x+y) = f(y) + f(x)\) and \(f(xy) = f(y) f(x)\), for all \(x\) and \(y\) in \(R\). Let \(V = f(A)\), where \(V\) is an anti S-fuzzy subhemiring of \(R^l\). We have to prove that \(A\) is an anti S-fuzzy subhemiring of \(R\). Let \(x\) and \(y\) in \(R\).
Then, $\mu_A(x+y) = \mu_A(f(x+y))$, since $\mu_A(f(x)) = \mu_A(x)$

\[= \mu_A(f(y) + f(x)), \text{ as } f \text{ is an anti-homomorphism} \]

\[\leq S (\mu_A(f(y)) , \mu_A(f(x))) \]

\[= S (\mu_A(f(x)) , \mu_A(f(y))) \]

\[= S (\mu_A(x), \mu_A(y)), \text{ since } \mu_A(f(x)) = \mu_A(x) \]

which implies that $\mu_A(x+y) \leq S (\mu_A(x), \mu_A(y))$.

Again, $\mu_A(xy) = \mu_A(f(xy))$, since $\mu_A(f(x)) = \mu_A(x)$

\[= \mu_A(f(y)f(x)), \text{ as } f \text{ is an anti-homomorphism} \]

\[\leq S (\mu_A(f(y)) , \mu_A(f(x))) \]

\[= S (\mu_A(f(x)) , \mu_A(f(y))) \]

\[= S (\mu_A(x), \mu_A(y)), \text{ since } \mu_A(f(x)) = \mu_A(x) \]

which implies that $\mu_A(xy) \leq S (\mu_A(x), \mu_A(y))$.

Hence A is an anti S-fuzzy subhemiring of R. \hfill \Box

2.2.17 **Theorem:** Let A be an anti S-fuzzy subhemiring of a hemiring R, A^+ be a fuzzy set in R defined by $A^+(x) = A(x)+1 - A(0)$, for all $x \in R$. Then A^+ is an anti S-fuzzy subhemiring of a hemiring R.

Proof: Let x and y in R. We have,

\[A^+(x+y) = A(x+y) + 1 - A(0) \leq S (A(x), A(y)) + 1 - A(0) \]

\[\leq S((A(x) + 1 - A(0)) , (A(y) + 1 - A(0))) \]

\[= S (A^+(x), A^+(y)). \]

Therefore, $A^+(x+y) \leq S (A^+(x), A^+(y))$, for all $x, y \in R$.

Similarly, $A^+(xy) = A(xy) + 1 - A(0) \leq S (A(x), A(y)) + 1 - A(0)$
\[S((A(x) +1- A(0)), (A(y) +1- A(0))) \]
\[= S(A^+(x), A^+(y)). \]

Therefore, \(A^+(xy) \leq S(A^+(x), A^+(y)) \), for all \(x, y \in R \).

Hence \(A^+ \) is an anti S-fuzzy subhemiring of a hemiring \(R \). \(\square \)

2.2.18 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R \), \(A^+ \) be a fuzzy set in \(R \) defined by \(A^+(x) = A(x) +1 - A(0) \), for all \(x \in R \). Then there exists \(0 \) in \(R \) such that \(A(0) = 1 \) if and only if \(A^+(x) = A(x) \).

Proof: The argument is trivial.

2.2.19 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R \), \(A^+ \) be a fuzzy set in \(R \) defined by \(A^+(x) = A(x) +1 - A(0) \), for all \(x \in R \). Then there exists \(x \in R \) such that \(A^+(x) = 1 \) if and only if \(x = 0 \).

Proof: The argument is trivial.

2.2.20 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R \), \(A^+ \) be a fuzzy set in \(R \) defined by \(A^+(x) = A(x) +1 - A(0) \), for all \(x \in R \). Then \((A^+)^+ = A^+ \).

Proof: Let \(x \) and \(y \in R \). We have, \((A^+)^+(x) = A^+(x) +1 - A^+(0) = \{ A(x) +1 - A(0) \} +1 - \{ A(0) +1 - A(0) \} = A(x) +1 - A(0) = A^+(x). \) Hence \((A^+)^+ = A^+ \).

2.2.21 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R \). Then \(A^0 \) is an anti S-fuzzy subhemiring of the hemiring \(R \).

Proof: For any \(x \in R \), we have
\[A^0(x+y) = A(x+y)A(0) \leq [A(0)] S(A(x), A(y)) \]
\[\leq S([A(x)A(0)], [A(y)A(0)]) = S(A^0(x), A^0(y)). \]
That is \(A^0(x+y) \leq S(A^0(x), A^0(y)), \) for all \(x, y \in R \).
Similarly, \(A^0(xy) = A(xy)A(0) \leq [A(0)] S (A(x), A(y)) \)
\[\leq S ([A(x)A(0)], [A(y)A(0)]) = S (A^0(x), A^0(y)). \]
That is \(A^0(xy) \leq S (A^0(x), A^0(y)), \) for all \(x, y \in R. \)

Hence \(A^0 \) is an anti S-fuzzy subhemiring of the hemiring \(R. \)

2.3 LOWER LEVEL SUBHEMIRINGS OF ANTI S-FUZZY SUBHEMIRING OF A HEMIRING

2.3.1 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R. \) Then for \(\alpha \) in \([0,1]\) such that \(\mu_A(0) \leq \alpha, A_\alpha \) is a lower level subhemiring of \(R. \)

Proof: For all \(x \) and \(y \) in \(A_\alpha \), we have, \(\mu_A(x) \leq \alpha \) and \(\mu_A(y) \leq \alpha. \)

Now, \(\mu_A(x+y) \leq S(\mu_A(x), \mu_A(y)) \leq S(\alpha, \alpha) = \alpha, \) which implies that \(\mu_A(x+y) \leq \alpha. \)

And, \(\mu_A(xy) \leq S (\mu_A(x), \mu_A(y)) \leq S(\alpha, \alpha) = \alpha, \) which implies that \(\mu_A(xy) \leq \alpha. \)

Therefore, \(\mu_A(x+y) \leq \alpha \) and \(\mu_A(xy) \leq \alpha. \) Therefore, \(x + y \) and \(xy \in A_\alpha. \)

Hence \(A_\alpha \) is a lower level subhemiring of a hemiring \(R. \)

2.3.2 Theorem: Let \(A \) be an anti S-fuzzy subhemiring of a hemiring \(R. \) Then two lower level subhemiring \(A_{\alpha_1}, A_{\alpha_2} \) and \(\alpha_1, \alpha_2 \) are in \([0,1]\) such that \(\mu_A(0) \leq \alpha_1, \mu_A(0) \leq \alpha_2 \) with \(\alpha_1 < \alpha_2 \) of \(A \) are equal if and only if there is no \(x \in R \) such that \(\alpha_2 > \mu_A(x) > \alpha_1. \)

Proof: Assume that \(A_{\alpha_1} = A_{\alpha_2}. \) Suppose there exists \(x \) in \(R \) such that \(\alpha_2 > \mu_A(x) > \alpha_1. \) Then \(A_{\alpha_1} \subseteq A_{\alpha_2} \) implies \(x \) belongs to \(A_{\alpha_2}, \) but not in \(A_{\alpha_1}. \) This is contradiction to \(A_{\alpha_1} = A_{\alpha_2}. \) Therefore there is no \(x \in R \) such that \(\alpha_2 > \mu_A(x) > \alpha_1. \) Conversely if there is no \(x \in R \) such that \(\alpha_2 > \mu_A(x) > \alpha_1. \) Then \(A_{\alpha_1} = A_{\alpha_2}. \) (by the definition of lower level set).
2.3.3 Theorem: Let R be a hemiring and A be a fuzzy subset of R such that A_α be a subhemiring of R. If α in $[0,1]$, then A is an anti S-fuzzy subhemiring of R.

Proof: The argument is trivial.

2.3.4 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If any two lower level subhemirings of A belongs to R, then their intersection is also lower level subhemiring of $A \in R$.

Proof: Let $\alpha_1, \alpha_2 \in [0,1]$.

Case (i): If $\alpha_1 < \mu_A(x) < \alpha_2$, then $A_{\alpha_1} \subseteq A_{\alpha_2}$.

Therefore, $A_{\alpha_1} \cap A_{\alpha_2} = A_{\alpha_1}$, but A_{α_1} is a lower level subhemiring of A.

Case (ii): If $\alpha_1 > \mu_A(x) > \alpha_2$, then $A_{\alpha_2} \subseteq A_{\alpha_1}$.

Therefore, $A_{\alpha_1} \cap A_{\alpha_2} = A_{\alpha_2}$, but A_{α_2} is a lower level subhemiring of A.

Case (iii): If $\alpha_1 = \alpha_2$, then $A_{\alpha_1} = A_{\alpha_2}$.

In all cases, intersection of any two lower level subhemirings is a lower level subhemiring of A. \hspace{1cm} \Box

2.3.5 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If $\alpha_i \in [0,1]$ and $A_{\alpha_i}, i \in I$ is a collection of lower level subhemirings of A, then their intersection is also a lower level subhemiring of A.

Proof: The argument is trivial.

2.3.6 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If any two lower level subhemirings of A belongs to R, then their union is also a lower level subhemiring of $A \in R$.

Proof: Let $\alpha_1, \alpha_2 \in [0,1]$.
Case (i): If $\alpha_1 < \mu_A(x) < \alpha_2$, then $A_{\alpha_1} \subseteq A_{\alpha_2}$.

Therefore, $A_{\alpha_1} \cup A_{\alpha_2} = A_{\alpha_2}$, but A_{α_2} is a lower level subhemiring of A.

Case (ii): If $\alpha_1 > \mu_A(x) > \alpha_2$, then $A_{\alpha_2} \subseteq A_{\alpha_1}$.

Therefore, $A_{\alpha_1} \cup A_{\alpha_2} = A_{\alpha_1}$, but A_{α_1} is a lower level subhemiring of A.

Case (iii): If $\alpha_1 = \alpha_2$, then $A_{\alpha_1} = A_{\alpha_2}$.

In all cases, union of any two lower level subhemiring is also a lower level subhemiring of A.

2.3.7 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring R. If $\alpha_i \in [0,1]$ and A_{α_i}, $i \in I$ is a collection of lower level subhemirings of A, then their union is also a lower level subhemiring of A.

Proof: The argument is trivial.

2.3.8 Theorem: The homomorphic image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^l.

Proof: Let $(R, +, \cdot)$ and $(R^l, +, \cdot)$ be any two hemirings and $f : R \rightarrow R^l$ be a homomorphism. That is, $f(x+y)=f(x)+f(y)$ and $f(xy)=f(x)f(y)$, for all x and $y \in R$. Let $V = f(A)$, where A is an anti S-fuzzy subhemiring of a hemiring R. Clearly V is an anti S-fuzzy subhemiring of a hemiring R^l. Let x and $y \in R$, implies $f(x)$ and $f(y) \in R^l$. Let A_{α} is a lower level subhemiring of A.

That is, $\mu_A(x) \leq \alpha$ and $\mu_A(y) \leq \alpha$; $\mu_A(x+ y) \leq \alpha$, $\mu_A(xy) \leq \alpha$.

We have to prove that $f (A_{\alpha})$ is a lower level subhemiring of V.

Now, $\mu_V(f(x)) \leq \mu_A(x) \leq \alpha$, which implies that $\mu_V(f(x)) \leq \alpha$; and $\mu_V(f(y)) \leq \mu_A(y) \leq \alpha$, which implies that $\mu_V(f(y)) \leq \alpha$ and
\(\mu_V(f(x) + f(y)) = \mu_V(f(x + y)), \) as \(f \) is a homomorphism
\[\leq \mu_A(x+y) \leq \alpha, \] which implies that \(\mu_V(f(x) + f(y)) \leq \alpha. \)

Also, \(\mu_V(f(x)f(y)) = \mu_V(f(xy)), \) as \(f \) is a homomorphism
\[\leq \mu_A(xy) \leq \alpha, \] which implies that \(\mu_V(f(x)f(y)) \leq \alpha. \)

Therefore, \(\mu_V(f(x) + f(y)) \leq \alpha, \mu_V(f(x)f(y)) \leq \alpha. \)

Hence \(f(A_\alpha) \) is a lower level subhemiring of an anti S-fuzzy subhemiring \(V \) of a hemiring \(R^l. \)

2.3.9 Theorem: The homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring \(R^l \) is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring \(R. \)

Proof: Let \((R, +, \cdot) \) and \((R^l, +, \cdot) \) be any two hemirings and \(f : R \to R^l \) be a homomorphism. That is, \(f(x+y) = f(x) + f(y) \) and \(f(xy) = f(x)f(y) \) for all \(x \) and \(y \) in \(R. \) Let \(V = f(A), \) where \(V \) is an anti S-fuzzy subhemiring of a hemiring \(R^l. \) Clearly \(A \) is an anti S-fuzzy subhemiring of a hemiring \(R. \) Let \(f(x) \) and \(f(y) \) in \(R^l, \) implies \(x \) and \(y \) in \(R. \) Let \(f(A_\alpha) \) is a lower level subhemiring of \(V. \)

That is, \(\mu_V(f(x)) \leq \alpha \) and \(\mu_V(f(y)) \leq \alpha; \)
\[\mu_V(f(x) + f(y)) \leq \alpha, \mu_V(f(x)f(y)) \leq \alpha. \]

We have to prove that \(A_\alpha \) is a lower level subhemiring of \(A. \)

Now, \(\mu_A(x) = \mu_V(f(x)) \leq \alpha, \) implies that \(\mu_A(x) \leq \alpha; \)
\[\mu_A(y) = \mu_V(f(y)) \leq \alpha, \] implies that \(\mu_A(y) \leq \alpha \)
and \(\mu_A(x + y) = \mu_V(f(x + y)) = \mu_V(f(x) + f(y)) \leq \alpha, \)
which implies that \(\mu_A(x + y) \leq \alpha. \)
Also, \(\mu_A(xy) = \mu_V(f(xy)) = \mu_V(f(x)f(y)) \leq \alpha \), which implies that \(\mu_A(xy) \leq \alpha \).

Therefore, \(\mu_V(f(x) + f(y)) \leq \alpha \), \(\mu_V(f(x)f(y)) \leq \alpha \). Hence, \(A_\alpha \) is a lower level subhemiring of an anti S-fuzzy subhemiring \(A \) of \(R \).

2.3.10 Theorem: The anti S-homomorphic image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring \(R \) is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring \(R^l \).

Proof: Let \((R, +, \cdot) \) and \((R^l, +, \cdot) \) be any two hemirings and \(f : R \rightarrow R^l \) be an anti-homomorphism. That is, \(f(x+y) = f(y) + f(x) \) and \(f(xy) = f(y)f(x) \), for all \(x \) and \(y \in R \). Let \(V = f(A) \), where \(A \) is an anti S-fuzzy subhemiring of \(R \).

Clearly \(V \) is an anti S-fuzzy subhemiring of \(R^l \). Let \(x \) and \(y \in R \), implies \(f(x) \) and \(f(y) \) in \(R^l \). Let \(A_\alpha \) is a lower level subhemiring of \(A \).

That is, \(\mu_A(x) \leq \alpha \) and \(\mu_A(y) \leq \alpha \), \(\mu_A(y + x) \leq \alpha \), \(\mu_A(yx) \leq \alpha \).

We have to prove that \(f(A_\alpha) \) is a lower level subhemiring of \(V \).

Now, \(\mu_V(f(x)) \leq \mu_A(x) \leq \alpha \), which implies that \(\mu_V(f(x)) \leq \alpha \);

\[\mu_V(f(y)) \leq \mu_A(y) \leq \alpha \], which implies that \(\mu_V(f(y)) \leq \alpha \).

Now, \(\mu_V(f(x) + f(y)) = \mu_V(f(y + x)) \), as \(f \) is an anti-homomorphism

\[\leq \mu_A(y + x) \leq \alpha \], which implies that \(\mu_V(f(x) + f(y)) \leq \alpha \).

Also, \(\mu_V(f(x)f(y)) = \mu_V(f(yx)) \), as \(f \) is an anti-homomorphism

\[\leq \mu_A(yx) \leq \alpha \], which implies that \(\mu_V(f(x)f(y)) \leq \alpha \).

Therefore, \(\mu_V(f(x) + f(y)) \leq \alpha \) and \(\mu_V(f(x)f(y)) \leq \alpha \). Hence \(f(A_\alpha) \) is a lower level subhemiring of an anti S-fuzzy subhemiring \(V \) of \(R^l \).
2.3.11 **Theorem:** The anti-homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R^l is a lower level subhemiring of an anti S-fuzzy subhemiring of a hemiring R.

Proof: Let $(R, +, \cdot)$ and $(R^l, +, \cdot)$ be any two hemirings and $f : R \rightarrow R^l$ be an anti-homomorphism. That is, $f(x+y) = f(y)+ f(x)$ and $f(xy) = f(y)f(x)$, for all x and $y \in R$. Let $V = f(A)$, where V is an anti S-fuzzy subhemiring of a hemiring R^l. Clearly A is an anti S-fuzzy subhemiring of a hemiring R. Let $f(x)$ and $f(y)$ in R^l, implies x and y in R. Let $f(A_\alpha)$ is a lower level subhemiring of V. That is, $\mu_V(f(x)) \leq \alpha$ and $\mu_V(f(y)) \leq \alpha$; $\mu_V(f(y)+f(x)) \leq \alpha$, $\mu_V(f(y)f(x)) \leq \alpha$. We have to prove that A_α is a lower level subhemiring of A. Now, $\mu_A(x) = \mu_V(f(x)) \leq \alpha$, which implies that $\mu_A(x) \leq \alpha$;

$$\mu_A(y) = \mu_V(f(y)) \leq \alpha,$$

which implies that $\mu_A(y) \leq \alpha$.

Now, $\mu_A(x+y) = \mu_V(f(x+y)) = \mu_V(f(y)+f(x)) \leq \alpha$,

which implies that $\mu_A(x+y) \leq \alpha$.

Also, $\mu_A(xy) = \mu_V(f(xy)) = \mu_V(f(y)f(x)) \leq \alpha$,

which implies that $\mu_A(xy) \leq \alpha$.

Therefore, $\mu_V(f(x) + f(y)) \leq \alpha$ and $\mu_V(f(x)f(y)) \leq \alpha$. Hence A_α is a lower level subhemiring of an anti S-fuzzy subhemiring A of R. \(\square\)

2.3.12 **Theorem:** Let $(R, +, \cdot)$ be a hemiring and A be a non empty subset of R. Then A is a subhemiring of R if and only if $B = <\chi_A>$ is an anti S-fuzzy subhemiring of R, where χ_A is the characteristic function.

Proof: The argument is trivial.
2.4 ANTI S-FUZZY NORMAL SUBHEMIRINGS OF A HEMIRING

2.4.1 Theorem: Let \((R, +, .)\) be a hemiring. If \(A\) and \(B\) are two anti S-fuzzy normal subhemirings of \(R\), then their union \(A \cup B\) is an anti S-fuzzy normal subhemiring of \(R\).

Proof: Let \(x\) and \(y \in R\). Let \(A = \{ \langle x, \mu_A(x) \rangle / x \in R \} \) and \(B = \{ \langle x, \mu_B(x) \rangle / x \in R \} \) be anti S-fuzzy normal subhemirings of a hemiring \(R\). Let \(C = A \cup B \) and \(C = \{ \langle x, \mu_C(x) \rangle / x \in R \} \), where \(\mu_C(x) = \max \{ \mu_A(x), \mu_B(x) \} \). Then, clearly \(C\) is an anti S-fuzzy subhemiring of a hemiring \(R\), since \(A\) and \(B\) are two anti S-fuzzy subhemirings of the hemiring \(R\).

And, \(\mu_C(xy) = \max \{ \mu_A(xy), \mu_B(xy) \} = \max \{ \mu_A(yx), \mu_B(yx) \} = \mu_C(yx)\), for all \(x\) and \(y \in R\). Therefore, \(\mu_C(xy) = \mu_C(yx)\), for all \(x\) and \(y \in R\).

Hence \(A \cup B\) is an anti S-fuzzy normal subhemiring of the hemiring \(R\). \(\square\)

2.4.2 Theorem: Let \((R, +, .)\) be a hemiring. The union of a family of anti S-fuzzy normal subhemirings of \(R\) is an anti S-fuzzy normal subhemiring of \(R\).

Proof: The argument is trivial.

2.4.3 Theorem: Let \(A\) and \(B\) be anti S-fuzzy subhemirings of the hemirings \(G\) and \(H\), respectively. If \(A\) and \(B\) are anti S-fuzzy normal subhemirings, then \(A \times B\) is an anti S-fuzzy normal subhemiring of \(G \times H\).
Proof: Let A and B be anti S-fuzzy normal subhemirings of the hemirings G and H respectively. Clearly $A \times B$ is an anti S-fuzzy subhemiring of $G \times H$. Let x_1 and $x_2 \in G$, y_1 and $y_2 \in H$. Then (x_1, y_1) and $(x_2, y_2) \in G \times H$.

Now, $\mu_{A \times B}[(x_1, y_1)(x_2, y_2)] = \mu_{A \times B}(x_1x_2, y_1y_2)$

$$= \max \{ \mu_A(x_1x_2), \mu_B(y_1y_2) \}$$

$$= \max \{ \mu_A(x_2x_1), \mu_B(y_2y_1) \},$$

$$= \mu_{A \times B}(x_2x_1, y_2y_1)$$

$$= \mu_{A \times B}[(x_2, y_2)(x_1, y_1)].$$

Therefore, $\mu_{A \times B}[(x_1, y_1)(x_2, y_2)] = \mu_{A \times B}[(x_2, y_2)(x_1, y_1)].$

Hence $A \times B$ is an anti S-fuzzy normal subhemiring of $G \times H$.

2.4.4 Theorem: Let A and B be anti S-fuzzy normal subhemiring of the hemirings R_1 and R_2 respectively. Suppose that 0_1 and 0_2 are the zero element of R_1 and R_2 respectively. If $A \times B$ is an anti S-fuzzy normal subhemiring of $R_1 \times R_2$, then at least one of the following two statements must hold.

(i) $\mu_B(0_1) \leq \mu_A(x)$, for all $x \in R_1$,

(ii) $\mu_A(0) \leq \mu_B(y)$, for all $y \in R_2$.

Proof: The argument is trivial.

2.4.5 Theorem: Let A and B be two fuzzy subsets of the hemirings R_1 and R_2 respectively and $A \times B$ is an anti S-fuzzy normal subhemiring of $R_1 \times R_2$. Then the following are true:

(i) if $\mu_A(x) \geq \mu_B(0_1)$, then A is an anti S-fuzzy normal subhemiring of R_1.

(ii) if $\mu_B(x) \geq \mu_A(0)$, then B is an anti S-fuzzy normal subhemiring of R_2.

44
(iii) either A is an anti S-fuzzy normal subhemiring of R₁ or B is an anti S-fuzzy normal subhemiring of R₂.

Proof: The argument is trivial.

2.4.6 Theorem: Let A be a fuzzy subset in a hemiring R and V be the anti-strongest fuzzy relation on R. Then A is an anti S-fuzzy normal subhemiring of R if and only if V is an anti S-fuzzy normal subhemiring of R×R.

Proof: The argument is trivial.

2.4.7 Theorem: Let (R, +, .) and (R¹, +, .) be any two hemirings. The homomorphic image of an anti S-fuzzy normal subhemiring of R is an anti S-fuzzy normal subhemiring of R¹.

Proof: Let (R, +, .) and (R¹, +, .) be any two hemirings and f : R → R¹ be a homomorphism. Then, f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y ∈ R. Let V = f(A), where A is an anti S-fuzzy normal subhemiring of a hemiring R. We have to prove that V is an anti S-fuzzy normal subhemiring of a hemiring R¹. Now, for f(x), f(y) in R¹, clearly V is an anti S-fuzzy subhemiring of a hemiring R¹, since A is an anti S-fuzzy subhemiring of a hemiring R. Now, μᵥ(f(x)f(y)) = μᵥ(f(xy)) ≤ μₐ(xy) = μᵥ(xy) ≥ μᵥ(f(yx))

= μᵥ(f(y)f(x)), which implies that μᵥ(f(x)f(y)) = μᵥ(f(y)f(x)), for all f(x) and f(y) in R¹. Hence V is an anti S-fuzzy normal subhemiring of a hemiring R¹. □

2.4.8 Theorem: Let (R, +, .) and (R¹, +, .) be any two hemirings. The homomorphic preimage of an anti S-fuzzy normal subhemiring of R¹ is an anti S-fuzzy normal subhemiring of R.
Proof: Let \((R, +, \cdot \) and \((R^l, +, \cdot \) be any two hemirings and \(f : R \rightarrow R^l \) be a homomorphism. Then, \(f(x+y) = f(x)+f(y) \) and \(f(xy) = f(x) f(y) \), for all \(x \) and \(y \in R \). Let \(V = f(A) \), where \(V \) is an anti S-fuzzy normal subhemiring of a hemiring \(R^l \). We have to prove that \(A \) is an anti S-fuzzy normal subhemiring of a hemiring \(R \). Let \(x \) and \(y \in R \). Then, clearly \(A \) is an anti S-fuzzy subhemiring of a hemiring \(R \), since \(V \) is an anti S-fuzzy subhemiring of a hemiring \(R \). Now, \(\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(x) f(y)) = \mu_v(f(y) f(x)) \\
= \mu_v(f(yx)) = \mu_A(yx) \), which implies that \(\mu_A(xy) = \mu_A(yx) \), for all \(x \) and \(y \) in \(R \). Hence \(A \) is an anti S-fuzzy normal subhemiring of a hemiring \(R \). \(\Box \)

2.4.9 Theorem: Let \((R, +, \cdot \) and \((R^l, +, \cdot \) be any two hemirings. The anti-homomorphic image of an anti S-fuzzy normal subhemiring of \(R \) is an anti S-fuzzy normal subhemiring of \(R^l \).

Proof: Let \((R, +, \cdot \) and \((R^l, +, \cdot \) be any two hemirings and \(f : R \rightarrow R^l \) be an anti-homomorphism. Then, \(f(x+y) = f(y) + f(x) \) and \(f(xy) = f(y) f(x) \), for all \(x \) and \(y \) in \(R \). Let \(V = f(A) \), where \(A \) is an anti S-fuzzy normal subhemiring of a hemiring \(R \). We have to prove that \(V \) is an anti S-fuzzy normal subhemiring of a hemiring \(R^l \). Now, for \(f(x) \) and \(f(y) \) in \(R^l \), clearly \(V \) is an anti S-fuzzy subhemiring of a hemiring \(R^l \), since \(A \) is an anti S-fuzzy subhemiring of a hemiring \(R \).

Now, \(\mu_v(f(x)f(y)) = \mu_v(f(yx)) \), as \(f \) is an anti-homomorphism

\[
\begin{align*}
\leq \mu_A(yx) \\
= \mu_A(xy) \\
\geq \mu_v(f(xy))
\end{align*}
\]
= \mu_v(f(y) f(x)), as f is an anti-homomorphism

which implies that \mu_v(f(x)f(y) = \mu_v(f(y)f(x)), for all f(x) and f(y) \in R^1.

Hence V is an anti S-fuzzy normal subhemiring of a hemiring R^1.

\[
\square
\]

2.4.10 Theorem: Let (R, +, \cdot) and (R^1, +, \cdot) be any two hemirings. The anti-homomorphic preimage of an anti S-fuzzy normal subhemiring of R^1 is an anti S-fuzzy normal subhemiring of R.

Proof: Let (R, +, \cdot) and (R^1, +, \cdot) be any two hemirings and f : R \rightarrow R^1 be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let V = f(A), where V is an anti S-fuzzy normal subhemiring of a hemiring R^1. We have to prove that A is an anti S-fuzzy normal subhemiring of a hemiring R. Let x and y in R, then, clearly A is an anti S-fuzzy subhemiring of a hemiring R, since V is an anti S-fuzzy subhemiring of a hemiring R^1.

Now, \mu_A(xy) = \mu_v(f(xy)), since \mu_A(x) = \mu_v(f(x))

= \mu_v(f(y)f(x)), as f is an anti-homomorphism

= \mu_v(f(x)f(y))

= \mu_v(f(yx)), as f is an anti-homomorphism

= \mu_A(yx), since \mu_A(x) = \mu_v(f(x))

which implies that \mu_A(xy) = \mu_A(yx), for all x and y in R.

Hence A is an anti S-fuzzy normal subhemiring of a hemiring R.

\[
\square
\]
In the next theorem we introduce a new composition operation in
S- fuzzy normal subhemiring

2.4.11 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring H and
f is an isomorphism from a hemiring R onto H. If A is an anti S-fuzzy normal
subhemiring of the hemiring H, then \(A^o f \) is an anti S-fuzzy normal
subhemiring of the hemiring R.

Proof: Let \(x \) and \(y \in R \) and A be an anti S-fuzzy normal subhemiring of a
hemiring H. Then clearly \(A^o f \) is an anti S-fuzzy subhemiring of a hemiring R.
Now since f is anti-isomorphism, \((\mu_A^o f)(xy) = \mu_A(f(xy)) \)
\[
= \mu_A(f(x)f(y)), \quad \text{as f is an isomorphism}
\]
\[
= \mu_A(f(y)f(x))
\]
\[
= \mu_A(f(yx)), \quad \text{as f is an isomorphism}
\]
\[
= (\mu_A^o f)(yx),
\] which implies that \((\mu_A^o f)(xy) = (\mu_A^o f)(yx) \), for all \(x \) and \(y \in R \).
Hence \(A^o f \) is an anti S-fuzzy normal subhemiring of a hemiring R.

2.4.12 Theorem: Let A be an anti S-fuzzy subhemiring of a hemiring H and
f is an anti-isomorphism from a hemiring R onto H. If A is an anti S-fuzzy
normal subhemiring of the hemiring H, then \(A^o f \) is an anti S-fuzzy normal
subhemiring of the hemiring R.

Proof: Let \(x \) and \(y \) in R and A be an anti S-fuzzy normal subhemiring of a
hemiring H. Then clearly \(A^o f \) is an anti S-fuzzy subhemiring of the hemiring R.
Now since f is anti-isomorphism, \((\mu_A^o f)(xy) = \mu_A(f(xy)) \)
\[
= \mu_A(f(y)f(x)),
\]
\[
\mu_A(f(x)f(y)) = \mu_A(f(yx)) = (\mu_A \circ f)(yx),
\]
which implies that \((\mu_A \circ f)(xy) = (\mu_A \circ f)(yx)\), for all \(x, y \in R\).

Hence \(A \circ f\) is an anti S-fuzzy normal subhemiring of the hemiring \(R\).

\textbf{2.4.13 Theorem:} Let \(A\) be an anti S-fuzzy normal subhemiring of a hemiring \(R\). Then for \(\alpha \in [0, 1]\) such that \(\mu_A(0) \leq \alpha\), \(A_\alpha\) is a lower level subhemiring of \(R\).

\textbf{Proof:} The argument is trivial.

\textbf{2.4.14 Theorem:} Let \(A\) be an anti S-fuzzy normal subhemiring of a hemiring \(R\), then two lower level subhemiring \(A_{\alpha_1}, A_{\alpha_2}\) and \(\alpha_1, \alpha_2\) are in \([0, 1]\) such that \(\mu_A(0) \leq \alpha_1, \mu_A(0) \leq \alpha_2\) with \(\alpha_1 < \alpha_2\) of \(A\) are equal if and only if there is no \(x\) in \(R\) such that \(\alpha_2 > \mu_A(x) > \alpha_1\).

\textbf{Proof:} The argument is trivial.

\textbf{2.4.15 Theorem:} Let \(A\) be an anti S-fuzzy normal subhemiring of a hemiring \(R\). If any two lower level subhemirings of \(A\) belongs to \(R\), then their intersection is also lower level subhemiring of \(A \in R\).

\textbf{Proof :} The argument is trivial.

\textbf{2.4.16 Theorem:} Let \(A\) be an anti S-fuzzy normal subhemiring of a hemiring \(R\). If \(\alpha \in [0, 1]\), and \(A_{\alpha_i}, i \in I\) is a collection of lower level subhemirings of \(A\), then their intersection is also a lower level subhemiring of \(A\).

\textbf{Proof:} The argument is trivial.
2.4.17 Theorem: Let A be an anti S-fuzzy normal subhemiring of a hemiring R. If any two lower level subhemirings of A belongs to R, then their union is also a lower level subhemiring of $A \in R$.

Proof: The argument is trivial.

2.4.18 Theorem: Let A be an anti S-fuzzy normal subhemiring of a hemiring R. If $\alpha_i \in [0,1]$ and $A_{\alpha_i}, i \in I$ is a collection of lower level subhemirings of A, then their union is also a lower level subhemiring of A.

Proof: The argument is trivial.

2.4.19 Theorem: The homomorphic image of a lower level subhemiring of an anti S-fuzzy normal subhemiring of a hemiring R is a lower level subhemiring of an anti S-fuzzy normal subhemiring of R^l.

Proof: The argument is trivial.

2.4.20 Theorem: The homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy normal subhemiring of a hemiring R^l is a lower level subhemiring of an anti S-fuzzy normal subhemiring of R.

Proof: The argument is trivial.

2.4.21 Theorem: The anti-homomorphic image of a lower level subhemiring of an anti S-fuzzy normal subhemiring of a hemiring R is a lower level subhemiring of an anti S-fuzzy normal subhemiring of R^l.

Proof: The argument is trivial.

2.4.22 Theorem: The anti-homomorphic pre-image of a lower level subhemiring of an anti S-fuzzy normal subhemiring of a hemiring R^l is a lower level subhemiring of an anti S-fuzzy normal subhemiring of R.

Proof: The argument is trivial.