CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT ii
LIST OF FIGURES ix
LIST OF TABLES xiv
NOTATIONS xv

CHAPTER 1 : INTRODUCTION 1
1.1 : PURPOSE OF STUDY 1
1.2 : METHOD OF INVESTIGATION 2

CHAPTER 2 : LITERATURE REVIEW 5
2.1 : INTRODUCTION 5
2.2 : PREVIOUS WORKS ON MATHEMATICAL FORMULATION OF UNSTEADY FLOW SITUATION 5
2.3 : PREVIOUS WORKS ON ANALYTICAL AND GRAPHICAL SOLUTION OF DAM-BREAK PROBLEM 10
2.4 : PREVIOUS WORKS ON NUMERICAL SIMULATION OF UNSTEADY FLOW WITH SPECIAL EMPHASIS ON DAM-BREAK PROBLEM 14
2.5 : PREVIOUS WORKS ON DAM-BREAK MODELLING TECHNIQUE. 36
2.6 : CONCLUSION 39

CHAPTER 3 : DEVELOPMENT OF MATHEMATICAL MODEL 40
3.1 : INTRODUCTION 40
3.2 : GOVERNING EQUATION 41
3.3 : ASSUMPTIONS MADE FOR MODELLING PURPOSE 43
3.3.1 : Modelling Consideration at Downstream 43
3.3.2 : Modelling Consideration at Upstream 44
3.4 : NUMERICAL SCHEME FOR SOLUTION OF GOVERNING EQUATIONS 44
3.4.1 : Finite Difference Formulation of Governing Equations 46
3.5 : INITIAL CONDITION 47
3.5.1 : Analytical Solution of Flood Propagation due to Dike Failure 49
3.5.2 : Special Consideration for the Tip Region. 53
3.5.3 : Application of The Proposed Analytical Solution in Two-Dimensional Situation 54
3.6 : BOUNDARY CONDITION 55
3.7 : STABILITY CRITERIA 56
3.8 : CONCLUSION 57

CHAPTER 4 : BREACH MODELLING FOR RIVER DIKE OF ASSAM 59
4.1 : INTRODUCTION 59
4.2 : COMPLEXITY IN DIKE BREACH MODELLING 60
4.3 : DATA ACQUISITION FROM RECORDED DIKE BREACHES 63
4.3.1 : Yearwise Breach Record for Different Rivers of Assam 63
4.3.2 : Causes and Type of Failure 63
4.4 : MODELLING CONSIDERATION 100
4.4.1 : Breach Characteristics 100
4.4.1.1 : Shape of Breach 101
4.4.1.2 : Extent of Breach 101
4.4.1.3 : Rate of Breach Expansion 102
4.5 : PROBABILITY BASED APPROACH FOR PREDICTING BREACH WIDTH 103
4.6 : CONCLUSION 108

CHAPTER 5 : DEVELOPMENT OF COMPUTER MODEL 109
5.1 : INTRODUCTION 109
5.2 : DESCRIPTION OF THE SOFTWARE 110
5.3 : COMPUTER PROGRAMMES AND RESULTS 113
5.3.1 : Computer Programme DIKE.BAS 113
5.3.1.1 : Results of DIKE.BAS 125
5.3.2 : Computer Programme PFL.BAS 137
5.3.2.1 : Results of PFL.BAS 139
5.3.3 : Computer Programme DAM.BAS 142
5.3.3.1 : Results of DAM.BAS 152
5.3.4 : Computer Programme VTIP.BAS 156
5.3.4.1 : Results of VTIP.BAS 158
5.4 : CONCLUSION 158

CHAPTER 6 : LABORATORY SIMULATION OF DIKE BREACH FLOOD 161
6.1 : INTRODUCTION 161
6.2 : EXPERIMENTAL SET-UP 163
6.3 : EXPERIMENTAL PROCEDURE 166
6.4 : SPECIAL CONSIDERATION FOR BED RESISTANCE 168
6.5 : EXPERIMENTAL RESULTS 169
6.6 : ANALYSIS OF EXPERIMENTAL RESULT 183
6.6.1 : Calculation of Tip Velocity 184
6.6.2 : Plot of Tip Velocity Vs Distance 184
6.6.3 : Critical Analysis of the Experimental Result 195
6.7 : CONCLUSION 203

CHAPTER 7 : VERIFICATION OF MATHEMATICAL
MODEL WITH EXPERIMENTAL RESULT 205

7.1 : INTRODUCTION 205
7.2 : MODEL CALIBRATION 206
7.2.1 : Necessity of Model Calibration 206
7.2.2 : Calibration of Roughness Co-efficient 207
7.2.3 : Calibrated 'n' Values for Different Bed Roughness 208
7.3 : COMPARISON OF COMPUTED AND
EXPERIMENTAL RESULTS 209
7.3.1 : Comparison of Computed and Experimental
Wave Front 209
7.3.1.1 : Assessment on the Basis of Comparison of Wave Tip 209
7.3.2 : Comparison of Variation of Tip Velocity with
Distance 217
7.3.2.1 : Model Assessment on the Basis of Tip Velocity 224
7.4 : CONCLUSION 226

CHAPTER 8 : CONCLUSION, GENERAL DISCUSSION AND
RECOMMENDATIONS FOR FURTHER STUDIES 228

8.1 : INTRODUCTION 228
8.2 : CONCLUSION AND GENERAL DISCUSSION 228
8.3 : RECOMMENDATIONS FOR FURTHER STUDIES 233
8.3.1 : Further Works on Mathematical Modelling
of Flood Propagation 234
8.3.2 : Further Works on Dam-Breach Modelling 235
8.3.3 : Further Works on Laboratory Model 236
8.3.4 : Further Works on Other Aspects 237

BIBLIOGRAPHY 238-250