Symbols used in the analytical section of the text have been explained below in a very descriptive manner. Regerous mathematical treatments are avoided as far as practicable.

A - Original data matrix of order \(m \times N \).

\(m \) - Number of variables.

\(N \) - Number of observations, cities for the present study.

\(r \) - Correlation co-efficient between any two variables.

\(R \) - Correlation matrix of all the variables, of order \(m \times m \).

\(R^2 \) - Multiple co-efficient of determination.

\(U^2 \) - Unique variance of each of \(m \) variables \((1-h_1^2)\).

\(h_i^2 \) - Communality. The portion of a variable's total variation that is explained by \(f \) factors. \(\frac{1}{2} \sum \frac{d_{ij}^2}{d_{ij}} \)

\(f \) - Number of factors or dimensions of variation.

\(F \) - Factor matrix having \(m \) rows and \(f \) columns.

\(f_{ij} \) - Correlation co-efficient of a variable \(i \) with factor \(j \), known as the loading of the factor and generally denoted by \(a_{ij} \).

\(K \) - Number of factors after rotation.

\(S \) - Factor scores matrix having \(N \) rows and \(K \) columns.

\(s_{ij} \) - Score given to observation \(i \) on factor \(j \).

\(F' \) - Rotated factor matrix having \(m \) rows and \(K \) columns. \((K \leq f)\).

\(D \) - Inter observation (city) similarity matrix of order \(M \times M \).
- Eigenvalue, Amount of variation in \(R \) which accrues to a particular factor. It is obtained by summing the squares of the loadings on each factor over \(n \) variables. \(\sum a_{ij} \)

Conventionally, the number of factors is restricted by giving the values of the eigenvalues equal to or greater than unity. \(\lambda > 1.00 \)

\% of \(\frac{\lambda_i}{\sum \lambda_i} \times 100 \). Percent of total variance. This measures the amount of data in the original matrix \(A \) which can be reproduced by a factor \(f_i \).

\% of \(\frac{\lambda_i}{\sum \lambda_i} \times 100 \) or \(\frac{\lambda_i}{\sum \sum h_{ij}^2} \times 100 \). Since, \(\frac{\lambda_i}{\sum \lambda_i} = \frac{\sum \sum h_{ij}^2}{\sum \sum \sum h_{ij}^2} \)

This is percent of common variance. The figures measure how much of the variation accounted for by \(f \) factors is found in each pattern or dimension.

- Total variation in \(R \), equals to the total number of variables. \(R_T = n \).

- Common variation in \(R \) = \(\sum \lambda_i \) = \(\sum \sum h_{ij}^2 \)

- Proportion of variation in variable \(i \) which accrues to or explained by factor \(j \).