LIST OF TABLES

| Table I | Weekly observations on total counts of Haemadipsa sylvestris at different months from different locations during 1987 and 1988. (Total of 12 random observations in respective places). | 35 |
| Table II | Frequency, Density and Abundance of H. sylvestris at different months during 1987 and 1988 at Tea Garden areas. (Calculations are based on total counts of Table I). | 37 |
| Table III | Frequency, Density and Abundance of H. sylvestris at different months during 1987 and 1988 at Grazing land areas. (Calculations are based on total counts of Table I). | 39 |
| Table IV | Frequency, Density and Abundance of H. sylvestris at different months during 1987 and 1988 at Java citronella cultivation areas. (Calculations are based on total counts of Table I). | 40 |
| Table V | Pooled data on Frequency, Density and Abundance of H. sylvestris observed in tea garden, grazing land and Java citronella plantation and their correlation with weather data during 1987. | 42 |
| Table VI | Pooled data on Frequency, Density, Abundance of H. sylvestris observed in tea garden, grazing land and Java citronella plantation and their correlation with weather data during 1988. | 43 |
| Table VII | Weight, Diameter, Number of air spaces and Interval between laying of successive egg capsules in days. (Data based on 20 cocoons). | 48 |
| Table VIII | Viability of cocoons, Incubation period and number of leeches hatched. | 49 |
| Table IX | Initial weights, Normal length and Expanded length of young leeches. | 50 |
| Table X | Pre-attachment, Feeding time and blood taken by young leeches. | 52 |
| Table XI | Pre-attachment, Feeding time and blood taken by grown up leeches. | 53 |
| Table XII | Effect of temperature on survival of H. sylvestris. | 54 |
Table XIII : Effect of moisture contents of the soil on the survival of leeches at \((27 \pm 1)\^\circ\text{C}\).

Table XIV : Effect of different Substrata/Feeds on the survival of leeches. (Temperature at \(27 \pm 1\)^\circ\text{C}, moisture 55%).

Table XV : Developmental and maturity periods of \textit{H.sylvestris} (Mean value of 3 sets of leeches, 5 leeches per set).

Table XVI : Dimensions of \textit{H. sylvestris} at maturity. (Data based on 15 leeches).

Table XVII : Toxicity and repellency of aqueous extract of selected plant species for land leech (\textit{H.sylvestris}).

Table XVIII : Comparative assessment on toxicity (mortality) of \textit{H. sylvestris} due to different solvent extracts obtained from non-aromatic plants. (Data based on 1 : 10 ratio for 15 replications).

Table XIX : Effect of different dilutions of petroleum ether extracts on toxicity of \textit{H. sylvestris} in percentage after 6 hrs and 10 hrs. (Average of 15 replications).

Table XX : Effect of different dilutions of Methanol extracts on toxicity of \textit{H. sylvestris} in percentage after 6 hrs and 10 hrs. (Average of 15 observations).

Table XXI : Effect of different dilutions of Acetone extracts on toxicity of \textit{H. sylvestris} in percentage after 6 hrs and 10 hrs. (Average of 15 observations).

Table XXII : Effect of different dilutions of Chloroform extracts on toxicity of \textit{H. sylvestris} in percentage after 6 hrs and 10 hrs (average of 15 observations)

Table XXIII : Results of Probit analysis of the toxicity of plant extracts using petroleum ether as solvent at various concentration for \textit{H. sylvestris}.

Table XXIV : Results of Probit analysis of the toxicity of plant extracts using Methanol as solvent at various concentration for \textit{H. sylvestris}.

Table XXV : Results of Probit analysis of the toxicity of plant extracts using Acetone as solvent at various concentration for \textit{H. sylvestris}.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXVI</td>
<td>Results of Probit analysis of the toxicity of plant extracts using Chloroform as solvent at various concentration for H. sylvestris.</td>
<td>84</td>
</tr>
<tr>
<td>XXVII</td>
<td>Effect of different dilution of Aromatic oils on percentage repellency of H. sylvestris at 6 hrs and 10 hrs (average of 20 observations).</td>
<td>86</td>
</tr>
<tr>
<td>XXVIII</td>
<td>Results of Probit analysis of repellent action of aromatic oils, at different concentration for H. sylvestris.</td>
<td>87</td>
</tr>
<tr>
<td>XXIX</td>
<td>Effect on the storage of plant samples towards toxicity of H. sylvestris. (Average of 5 replications)</td>
<td>89</td>
</tr>
<tr>
<td>XXX</td>
<td>Effect on the storage of aromatic oils on percentage repellency of H. sylvestris at (26-28)°C. Average of 5 replications.</td>
<td>90</td>
</tr>
<tr>
<td>XXXI</td>
<td>Detection of saponin and alkaloid from selected plants, showing prominent toxicity on H. sylvestris.</td>
<td>95</td>
</tr>
<tr>
<td>XXXII</td>
<td>Toxicity of H. sylvestris due to Saponin and Alkaloid components of the extracts observed after 1 hr of treatment. (15 Leeches for each test).</td>
<td>96</td>
</tr>
<tr>
<td>XXXIII</td>
<td>Toxicity and repellency of H. sylvestris due to Saponin and Alkaloid components of the berries of Solanum khasianum. (Data based on 15 leeches)</td>
<td>99</td>
</tr>
<tr>
<td>XXXIV</td>
<td>Observations on relative repellency of H. sylvestris due to different concentration of five aromatic oils. (Data based on 20 observations at 6 hrs).</td>
<td>100</td>
</tr>
<tr>
<td>XXXV</td>
<td>Results of analysis for major compounds in aromatic oils (by GLC method).</td>
<td>107</td>
</tr>
<tr>
<td>XXXVI</td>
<td>Percentage repellency of H. sylvestris due to aromatic compounds observed in aromatic oil products at different concentrations. (Data based on 10 observations after 6 hrs).</td>
<td>108</td>
</tr>
</tbody>
</table>