Chapter 2

Pseudo Algebraic Spaces

Contents

2.1 Introduction
2.2 Pseudo Topological Spaces
2.3 Pseudo Algebraic Spaces
2.4 Pseudo Normal Set
2.5 Pseudo Continuity
2.6 Pseudo Algebraic Homomorphism
2.7 Pseudo Kernel of a p-a Homomorphism.
2.8 Pseudo Inverse
2.1 Introduction:

In this chapter, introducing the concepts of Pseudo topology (p-topology), Pseudo topological space (p-topological space) and Pseudo algebraic space (p-a space), we have discussed some of their properties like p-normal set and Pseudo continuity (p-continuity). A special kind of mappings called p-a homomorphism with their properties is introduced. We have also introduced the notion of p-Kernel of a p-a homomorphism with example.

2.2 Pseudo Topological Spaces:

Following the definitions of general topology and group, we have defined as follows:

Definition 2.2.1 Let X be a non-empty set and T a class of subsets of X such that

i) $X \in T$

ii) there exists an $A_0 \in T$ such that $A_0 \subseteq A$ for every $A \in T$

iii) any finite intersection of members of T is in T.

The class T is called a Pseudo topology on X and the pair (X, T) is called a Pseudo topological space. When there is no scope for confusion, X may be simply called a p-topological space. The members of T are called Pseudo open sets (p-open sets) in X. A set A_0 with the property (ii) is called a minimal p-open set.

Proposition 2.2.1 In a p-topological space, there is one and only one minimal p-open set.
Proof: Let T be a p-topology on a non-empty set X with two minimal p-open sets A_o and A'_o. Since both A_o and A'_o belong to T and both are minimal, $A_o \subseteq A'_o$ and $A'_o \subseteq A_o$ so that $A_o = A'_o$. This completes the proof.

Remark 2.2.1 In view of the above proposition, a minimal p-open set is referred as the minimal p-open set.

Example 2.2.1 A topological space is a p-topological space. The null set may be taken as the minimal p-open set, the topology as the p-topology.

Let $T = \{\emptyset, \{a\}, \{b, c\}, X\}$ be a topology on $X = \{a, b, c\}$. Then T is a p-topology on X and (X, T) is a p-topological space with \emptyset as the minimal p-open set.

Example 2.2.2 A group is a p-topological space. The class of all subgroups may be taken as a p-topology with identity subgroup as the minimal p-open set. The p-topology T consisting of all subgroups of a group G is called the usual p-topology on G.

Let $G = \{1, -1, i, -i\}$ where $i = \sqrt{-1}$ be a group under multiplication. Let $T = \{\{1\}, \{1, -1\}, G\}$ be a p-topology on G, because $\{1\}$ is the minimal p-open set and any finite intersection of members of T is again in T.

Example of a p-topology which is not a topology

Example 2.2.3 Let $X = \{a, b, c, d\}$ and

$$T = \{\{a\}, \{a, b\}, \{a, c\}, X\}$$

Then T is a p-topology on X with $\{a\}$ as the minimal p-open set. But T is not a topology on X.

8
Example 2.2.4 On the set of real numbers \(\mathbb{R} \),

Let \(T_1 = \{ \{1\}, \{1\} \cup \{0, \frac{1}{n}\}, n = 1, 2, 3, \ldots \} \)

\[T_2 = \{ \{2\}, \{2\} \cup \{0, \frac{1}{n}\}, n = 1, 2, 3, \ldots \} \]

Then \(T_1 \) is a \(p \)-topology on \(\mathbb{R} \) with \(\{1\} \) as the minimal \(p \)-open set
and \(T_2 \) is also a \(p \)-topology on \(\mathbb{R} \) with \(\{2\} \) as the minimal \(p \)-open set.

From this definition, we observe that different \(p \)-topologies can be generated on the same set.

Definition 2.2.2 Two \(p \)-topologies on a set \(X \) are called compatible
if they have the same minimal \(p \)-open set.

Example 2.2.5 Let \(X = \{a, b, c, d\} \) and

\[T_1 = \{ \{a\}, \{a, b\}, \{a, c\}, X \} \]

\[T_2 = \{ \{a\}, \{a, b\}, \{a, d\}, X \} \]

Then \(T_1 \) and \(T_2 \) are compatible with common minimal \(p \)-open set \(\{a\} \).

Remark 2.2.2 In example 2.2.4 the two \(p \)-topologies \(T_1 \) and \(T_2 \) are
not compatible because their minimal \(p \)-open sets are different.

Proposition 2.2.2 The intersection of two compatible \(p \)-topologies
on a set is a \(p \)-topology on that set.

Proof: Let \(T_1 \) and \(T_2 \) be two compatible \(p \)-topologies on a set \(X \) with
common minimal \(p \)-open set \(A_0 \). Clearly \(X \in T_1 \cap T_2 \) and \(A_0 \) is
the minimal element of \(T_1 \cap T_2 \). If \(A \) is any member of \(T_1 \cap T_2 \),
then \(A \in T_1 \) and \(A \in T_2 \), consequently \(A_0 \subseteq A \).
Finally if \(\{ A_i : 1 \leq i \leq n \} \subseteq T_1 \cap T_2 \), then
\[
\{ A_i : 1 \leq i \leq n \} \in T_1 \text{ and } \{ A_i : 1 \leq i \leq n \} \in T_2 \text{ and } T_1 \text{ and } T_2 \text{ are p-topologies, } \bigcap_{i=1}^{n} A_i \in T_1 \cap T_2. \]
Hence \(T_1 \cap T_2 \) is a p-topology on \(X \).

Example 2.2.6 Let \(X = \{a, b, c, d, e\} \) and let
\[
T_1 = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, d\}, X\}
\]
and
\[
T_2 = \{\{a\}, \{a, b\}, \{a, d, e\}, X\}.
\]

\(T_1 \) and \(T_2 \) are compatible p-topologies with \(\{a\} \) as the minimal p-open set on \(X \). Then \(T_1 \cap T_2 = \{\{a\}, \{a, b\}, X\} \) is a p-topology on \(X \).

Proposition 2.2.3 Union of two compatible p-topologies is a p-topology compatible with the original p-topology.

Proof: Let \(T_1 \) and \(T_2 \) be two compatible p-topologies on a set \(X \) with the minimal p-open set \(A_0 \). Then \(X \in T_1 \cup T_2 \) and \(A_0 \in T_1 \cup T_2 \). Let \(A \) be any member of \(T_1 \cup T_2 \), then \(A \in T_1 \) or \(A \in T_2 \) or \(A \) belongs to both \(T_1 \) and \(T_2 \), so that \(A \subseteq A_0 \). Finally, if \(A, B \in T_1 \cup T_2 \), then \(A, B \in T_1 \) or \(A, B \in T_2 \) or \(A, B \) belong to both \(T_1 \) and \(T_2 \); since \(T_1 \) and \(T_2 \) are p-topologies on \(X \), then \(A \cap B \in T_1 \) and \(A \cap B \in T_2 \) and hence \(A \cap B \in T_1 \cup T_2 \). Therefore \(T_1 \cup T_2 \) is a compatible p-topology on \(X \).

Proposition 2.2.4 The intersection of two p-topologies on a finite set \(X \) is a p-topology on \(X \).

Proof: Let \(T_1 \) and \(T_2 \) be two p-topologies on a finite set \(X \). If they have the common minimal element, then it is already seen that \(T_1 \cap T_2 \) is a p-topology compatible with the given two p-topologies.
If T_1 and T_2 have different minimal elements and g_0 is the minimal common member of T_1 and T_2, then g_0 will be the minimal element of $T_1 \cap T_2$. Clearly $X \in T_1 \cap T_2$ and $T_1 \cap T_2$ is closed under formation of finite intersection.

But union of two p-topologies is not a p-topology. We consider example 2.2.7.

Example 2.2.7 Let $X = \{1, 2, 3, 4, 5\}$ and we consider two p-topologies T_1 and T_2 on X such that

$T_1 = \{\{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$

and $T_2 = \{\{2\}, \{2, 3\}, \{2, 4, 5\}, X\}$

Then $T_1 \cup T_2 = \{\{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, \{2, 4, 5\}, X\}$

is not a p-topology on X since $T_1 \cup T_2$ has no minimal p-open set.

Comparison of p-topologies:

Definition 2.2.3 Let T_1 and T_2 be two p-topologies on a set X. We say that T_1 is coarser (or weaker) than T_2 or that T_2 is finer (or stronger) than T_1 iff $T_1 \subseteq T_2$. If either $T_1 \subseteq T_2$ or $T_2 \subseteq T_1$, we say that the p-topologies T_1 and T_2 are comparable.

Definition 2.2.4 Let X be a non-empty set. Then $I = \{X\}$ is a p-topology on X. This p-topology on X is called the indiscrete p-topology on X. The pair (X, I) is called an indiscrete p-topological space.

Definition 2.2.5 Let X be a non-empty set. Let D be the collection of all subsets of X, then D is a p-topology on X, called the discrete p-topology on X. The pair (X, D) is called a discrete p-topological space.
Remark 2.2.3 It is seen that the discrete p-topology and the discrete topology on a set are same.

2.3 Pseudo Algebraic Spaces:

We begin with the definition of Pseudo algebraic structure on Pseudo topological space.

Definition 2.3.1 A p-topological space \((X, T)\) is said to have a Pseudo algebraic structure (p-a structure) if there exists a Pseudo algebraic function (p-a function)

\[\alpha : P^X \times P^X \rightarrow P^X \] (\(P^X\) is the power set of \(X\))

satisfying the following conditions:

i) \[\alpha(\alpha(A, B), C) = \alpha(\alpha(B, C), A) \], \(A, B, C \in P^X\)

ii) \(\alpha(A, B) \in T\) if \(\alpha(A, B) = \alpha(B, A)\) for \(A, B \in T\)

iii) if \(A_1 \subseteq A, B_1 \subseteq B\), then \(\alpha(A_1, B_1) \subseteq \alpha(A, B)\)

iv) \(\alpha(A_0, A) = \alpha(A, A_0), A \in P^X\) where \(A_0\) is the minimal p-open set.

We say that the triplet \((X, T, \alpha)\) is a p-topological space with a p-a structure \(\alpha\) or simply a Pseudo algebraic space (p-a space).

Example 2.3.1 A topological space \((X, T)\) is a p-a space where \(\alpha(A, B) = A \cup B\).

Let \((X, T)\) be a p-topological space. Then \(T\) is a p-topology. Let us define

\[\alpha : P^X \times P^X \rightarrow P^X \] by \(\alpha(A, B) = A \cup B\) for all \(A, B \in P^X\).

For \(A, B, C \in T\)
i) $\alpha(\alpha(A, B), C) = \alpha(A \cup B, C)$

 $= (A \cup B) \cup C$

 $= A \cup (B \cup C)$

 $= \alpha(A, \alpha(B, C))$

ii) $\alpha(A, B) = A \cup B$

 $= B \cup A$

 $= \alpha(B, A)$

 $\therefore \alpha(A, B) \in T.$

iii) if $A_i \subseteq A, \ B_i \subseteq B$, then

 $\alpha(A_i, B_i) = A_i \cup B_i$

 $\subseteq A \cup B$

 $= \alpha(A, B)$

iv) $\alpha(A_0, A) = A_0 \cup A, \ A \in P^X$, where A_0 is the minimal p-open set.

 $= A \cup A_0$

 $= \alpha(A, A_0)$

 $\therefore (X, T, \alpha)$ is a p-a space.

Example 2.3.2 A group G with the usual p-topology is a p-a space, where $\alpha(A, B) = AB$ (AB means usual product of complexes A and B)

Let $\alpha : P^G \times P^G \rightarrow P^G$ be defined by $\alpha(A, B) = AB$ (AB means the usual product of complexes A and B).
Then \(\alpha \) satisfies the conditions of a p-a function i.e.,

for \(A, B, C \in T \)

i) \(\alpha(\alpha(A, B), C) = \alpha(AB, C) \)

\[= (AB)C \]

\[= A(BC) \]

\[= \alpha(\alpha(A, \alpha(B, C))) \]

ii) for two subgroups \(A, B \) of \(G \), the product \(AB \) is a subgroup if and only if

\(AB = BA \) i.e. \(A, B \in T \)

\(\alpha(A, B) \in T \) if \(\alpha(A, B) = \alpha(B, A) \)

iii) if \(A, B \leq G \) and \(A_1 \subseteq A, B_1 \subseteq B \), then

\[A_1B_1 \subseteq AB \] i.e. if \(A, B \in T \) and

\[A_1 \subseteq A, B_1 \subseteq B, \text{ then } \alpha(A_1, B_1) \subseteq \alpha(A, B) \]

iv) \(\alpha(A_0, A) = A_0A, A_0 \subseteq A, A \in PG \), where \(A_0 \) is the minimal p-open set.

\[= AA_0 \]

\[= \alpha(A, A_0) \]

\(\therefore (G, T, \alpha) \) is a p-a space.

2.4 Pseudo Normal Set:

We define p-normal set in a p-a space and discuss its basic properties.
Definition 2.4.1 A subset A in a p-a space (X, T, α) is called a p-normal set if $\alpha(A, Y) = \alpha(Y, A)$ $\forall Y \in \mathcal{P}X$.

Definition 2.4.2 The p-topology T of a p-a space (X, T, α) is said to be p-normal if every p-open set is p-normal and a p-a space is said to be p-normal if its p-topology is p-normal.

Example 2.4.1 (i) Every topological space is a p-normal p-a space where $\alpha(A, B) = A \cup B$

We have shown that (X, T, α) is a p-a space where (X, T) is a p-topological space.

Now we show that it is also p-normal p-a space

$\alpha(A, X) = A \cup X$

$= X \cup A$

$= \alpha(X, A)$ for any $A \in T$ and $X \in \mathcal{P}X$

$\therefore (X, T, \alpha)$ is a p-normal p-a space.

(ii) Every abelian group with the usual p-topology is a p-normal p-a space where $\alpha(A, B) = AB$ (AB means usual product of complexes A and B)

We have proved that (G, T, α) is a p-a space where T is the usual p-topology on G. Again (G, T, α) is also a p-a space where G is an abelian group and T and α are the usual p-topology and the usual p-a function respectively. Now we show that it is also a p-normal p-a space.

$\alpha(A, G) = AG = GA = \alpha(G, A)$ for any $A \in T$ and $G \in \mathcal{P}G$.

$\therefore (G, T, \alpha)$ is a p-normal p-a space.
iii) Let G be a group and T be the set of all p-normal subgroups of G. Then (G, T, α) is a p-normal p-a space where $\alpha(A, B) = AB$. (AB means usual product of complexes A and B)

We have proved that a group G with the usual p-topology is a p-a space where

$\alpha(A, B) = AB$

Since T is the set of all p-normal subgroups of G, therefore, T is p-normal and hence (G, T, α) is a p-normal p-a space.

Proposition 2.4.1 Let (X, T, α) be a p-a space. Let A be a p-open set and B be a p-normal p-open subset of X, then $\alpha(A, B)$ is a p-open subset of X.

Proof: Let $\alpha : P^X \times P^X \rightarrow P^X$.

Since B is a p-normal p-open subset of X,

$\alpha(B, Y) = \alpha(Y, B)$, for any $Y \in T$,

Hence $\alpha(A, B) = \alpha(B, A), A \in T$

Therefore, $\alpha(A, B) \in T$. Hence proved.

Proposition 2.4.2 Let (X, T, α) be a p-a space and A, B be two p-normal p-open subsets of X. Then $\alpha(A, B)$ is a p-normal p-open subset of X.

Proof: Let $\alpha : P^X \times P^X \rightarrow P^X$

Since A, B are p-normal in X,

$\alpha(A, Y) = \alpha(Y, A)$

and $\alpha(B, Y) = \alpha(Y, B)$, for any $Y \in T$
Hence, \(\alpha(A, B) = \alpha(B, A), \ A \in T \)

Therefore, \(\alpha(A, B) \) is a p-open subset of \(X \).

Now \(\alpha(\alpha(A, B), Y) = \alpha(A, \alpha(B, Y)) \)

\[
= \alpha(A, \alpha(Y, B)) \\
= \alpha(\alpha(A, Y), B) \\
= \alpha(\alpha(Y, A), B) \\
= \alpha(Y, \alpha(A, B))
\]

Therefore, \(\alpha(A, B) \) is a p-normal p-open set.

Proposition 2.4.3 Let \((X, T, \alpha)\) be a p-a space. Let \(H \) be a p-normal p-open subset of \(X \) and \(K \) is p-open subset of \(X \) such that \(H \subseteq K \subseteq X \), then \(\alpha(H, K) \) is also a p-normal p-open subset of \(X \).

Proof: Let \(\alpha : P^X \times P^X \rightarrow P^X \). Since

\(H \) is a p-normal p-open subset of \(X \),

\[
\alpha(H, Y) = \alpha(Y, H), \text{ for any } Y \in T
\]

Hence, \(\alpha(H, K) = \alpha(K, H), \ (\therefore K \in T \) \)

\(\therefore \alpha(H, K) \) is a p-normal p-open subset of \(X \).

Proposition 2.4.4 Let \(H \) and \(K \) be p-normal p-open sets of a p-a space \((X, T, \alpha)\). Then \(HK \) is also a p-normal p-open subset of \(X \).

Proof: For p-normal p-open subset \(H \) of \(X \),

\(\alpha(H, Y) = \alpha(Y, H), \text{ for any } Y \in T. \)

Similarly for a p-normal p-open subset \(K \) of \(X \),
\(\alpha(K, Y) = \alpha(Y, K) \), for any \(Y \in T \).

\(\alpha(HK, Y) = \alpha(\alpha(H, K), Y) \), \(Y \in T \) where \(\alpha(H, K) = HK \)

\[= \alpha(H, \alpha(K, Y)) \]

\[= \alpha(\alpha(K, Y), H), \quad \text{Since } H \text{ is a p-normal p-open subset of } X \]

\[= \alpha(\alpha(Y, K), H) \]

\[= \alpha(Y, \alpha(K, H)), \quad \text{Since } K \text{ is p-normal.} \]

\[= \alpha(Y, \alpha(H, K)) \]

\[= \alpha(Y, HK) \]

\(\therefore HK \text{ is a p-normal p-open subset of } X. \)

Proposition 2.4.5 The intersection of any two p-normal p-open sets of a p-a space \((X, T, \alpha) \) is a p-normal p-open set.

Proof: Let \(H \) and \(K \) be two p-normal p-open sets of a p-a space \((X, T, \alpha) \)

Therefore for any \(Y \in T \)

\(\alpha(H, Y) = \alpha(Y, H). \)

and \(\alpha(K, Y) = \alpha(Y, K) \)

\(\alpha(H, Y) \cap \alpha(K, Y) = \alpha(Y, H) \cap \alpha(Y, K) \)

\(\Rightarrow \alpha(H \cap K, Y) = \alpha(Y, H \cap K), \; Y \in T \)

\(\Rightarrow H \cap K \text{ is a p-normal p-open subset of } X. \)

Proposition 2.4.6 Let \(B_1 \) and \(B_2 \) be p-normal p-open sets of a p-a space \((X, T, \alpha) \) and \(\alpha(A, B_1 \cap B_2) = \alpha(A, B_1) \cap \alpha(A, B_2) \) for
any $A \in T$. Then $B_1 \cap B_2$ is a p-normal p-open set.

Proof: Since B_1 and B_2 are p-normal p-open sets, it follows that

$\alpha(A, B_1)$ and $\alpha(A, B_2)$ are p-open sets.

So, $\alpha(A, B_1) \cap \alpha(A, B_2)$ is p-open and hence $\alpha(A, B_1 \cap B_2)$ is p-open

i.e., $\alpha(A, B_1 \cap B_2) = \alpha(B_1 \cap B_2, A), A \in T$

i.e., $B_1 \cap B_2$ is p-normal p-open set.

2.5 Pseudo Continuity:

The concept of Pseudo continuity of a function between two Pseudo topological spaces is introduced following the concept of continuity of a function between two topological spaces. We define

Definition 2.5.1 Let (X, T) and (Y, T^*) be two p-topological spaces. A function $f : X \to Y$ is said to be p-continuous if $f^!(A^*) \in T$ whenever $A^* \in T^*$ and is called p-open if $f(A) \in T^*$ whenever $A \in T$.

Proposition 2.5.1 Let (X, T) and (Y, T^*) be two p-topological spaces with the minimal p-open sets A_o and A_o^* respectively.

Then (i) f is p-continuous $\Rightarrow f(A_o) \subseteq A_o^*$

(ii) f is p-open and p-continuous $\Rightarrow f(A_o) = A_o^*$

Proof: (i) If f is p-continuous, then $f^!(A_o^*)$ is

a p-open subset of X and so $A_o \subseteq f^!(A_o^*)$

and hence $f(A_o) \subseteq f f^!(A_o^*) \subseteq A_o^*$.

ii) If in addition f is p-open, $f(A_o)$ is a p-open subset of Y and
so, \(A_0^* \subseteq f(A_0) \). Also \(f(A_0) \subseteq A_0^* \) \[\text{(from (i)}\]

This proves that \(f(A_0) = A_0^* \)

Example 2.5.1 Let \(X = \{1, 2, 3\} \) and \(Y = \{a\} \) and

\[\text{let } T_1 = \{\{1\}, \{1, 2\}, X\} \text{ and } T_2 = \{\{a\}\}\]

\[\text{let } f : X \to Y \text{ be defined by}\]

\[f(1) = f(2) = f(3) = a\]

Then \(f \) is both \(p \)-open and \(p \)-continuous.

\[f(\{1\}) = \{a\}, \quad f(\{2\}) = \{a\}, \quad f(\{3\}) = \{a\}\]

Thus the image of every \(p \)-open set in \(T_1 \) is \(p \)-open in \(T_2 \).

Hence, \(f \) is \(p \)-open.

Further,

\[f^{-1}(\{a\}) = \{1, 2, 3\} \in T_1\]

So, \(f \) is \(p \)-continuous.

This shows that \(f \) is both \(p \)-open and \(p \)-continuous.

Example 2.5.2 Let \(X = \{a, b, c, d\} \) and \(Y = \{x, y, z, w\} \)

\[\text{let } T = \{\{a\}, \{a, b\}, \{a, c\}, \{a, d\}, X\}\]

and \(T^* = \{\{x\}, \{x, y\}, \{x, z\}, \{x, w\}, Y\} \) be two \(p \)-topologies on \(X \) and \(Y \) respectively.

\[\text{Let } f : X \to Y \text{ defined by}\]

\[a \to x\]
\[b \to y\]
\[c \to w\]
\[d \to z\]
Here \(f(\{a\}) = \{x\} \in T^* \), \(f(\{a, b\}) = \{x, y\} \in T^* \), \(f(\{a, c\}) = \{x, w\} \in T^* \), \(f(x) = y \in T^* \)

This shows that \(f \) is p-open,

\[
\begin{align*}
 f^*(\{x\}) &= \{a\}, & f^*(\{x, y\}) &= \{a, b\}, & f^*(\{x, z\}) &= \{a, d\}, \\
 f^*(\{x, w\}) &= \{a, c\}, & f^*(Y) &= X. & \text{Hence, } f \text{ is p-continuous.}
\end{align*}
\]

Proposition 2.5.2 Let \((X, T_1)\), \((Y, T_2)\) and \((Z, T_3)\) be p-topological spaces and the mapping \(f : X \to Y \) and \(g : Y \to Z \) be p-continuous. Then the composition map \(g \circ f : X \to Z \) is p-continuous.

Proof: Let \(H \) be any p-open subset of \(Z \). Since \(g \) is p-continuous \(g^{-1}(H) \) is p-open subset of \(Y \). Again since \(f \) is p-continuous

\[
 f^{-1}[g^{-1}(H)] \text{ is p-open subset of } X.
\]

But

\[
 f^{-1}[g^{-1}(H)] = (f^{-1} \circ g^{-1})(H) = (g \circ f)^{-1}(H)
\]

Thus the inverse image under \(g \circ f \) of a p-open subset of \(Z \) is a p-open subset of \(X \) and therefore \(g \circ f \) is p-continuous.

Remark 2.5.1 If there is a p-continuous and p-open function

\[
f : (X, T) \to (Y, T^*)\]

i) if \(X \) has a non-empty minimal p-open set, then \(Y \) must also have a non-empty minimal p-open set. Moreover, for any \(B \in T^* \), \(f^{-1}(B) \) can not be empty, thus there exists an element \(b \) in every \(B \in T^* \) such that we have an \(a \) in some \(A \in T \) with \(f(a) = b \).

ii) if \(Y \) has an empty minimal p-open set, then \(X \) must also have an empty minimal p-open set.
2.6 Pseudo Algebraic Homomorphism:

A p-a homomorphism is simply a one-one correspondence between the p-open sets in X and the p-open sets in Y where X and Y are two p-a spaces. Now we begin with the definition of p-a homomorphism.

Definition 2.6.1 Let (X, T, α) and (Y, T*, β) be two p-a spaces. A function f : X → Y is called p-a homomorphism if it is such that

i) f is both p-open and p-continuous

ii) f(α(A, B)) = β(f(A), f(B)), A, B ∈ Px

and α(f*(A*), f*(B*)) = f*(β(A*, B*)) for A*, B* ∈ Py

In this case, Y is said to be a p-a homomorphic image of X.

Proposition 2.6.1 An onto p-a homomorphism maps the minimal p-open set onto the minimal p-open set.

Proof: It follows immediately from proposition 2.5.1 as a p-a homomorphism is both p-open and p-continuous.

Proposition 2.6.2 A p-a homomorphism maps a p-normal p-open set onto a p-normal p-open set.

Proof: Let f : (X, T, α) → (Y, T*, β) be a p-a homomorphism from one p-a space (X, T, α) to another p-a space (Y, T*, β). Let A be p-normal p-open subset of X. Then f(A) is a p-normal p-open subset of Y. Let N be any p-open subset of Y. Then from the p-continuity of f, it follows that f*(N) is a p-open subset of X.

Since A is a p-normal p-open subset of X,
\[\alpha(A, f^{-1}(N)) = \alpha(f^{-1}(N), A) \](i)

Since \(f \) is a \(p \)-a homomorphism

\[f(\alpha(A, f^{-1}(N))) = \beta(f(A), f f^{-1}(N)) \]

\[= \beta(f(A), N) \] (\(f \) is onto, \(f f^{-1}(N) = N \))

\[f(\alpha(f^{-1}(N), A)) = \beta(f f^{-1}(N), f(A)) \]

\[= \beta(N, f(A)) \]

By (i) it follows that

\[\beta(f(A), N) = \beta(N, f(A)) \]

But \(N \) is arbitrary, so that

\[\beta(f(A), N) = \beta(N, f(A)) \text{ for any } N \in T^* \]

Thus \(f(A) \) is a \(p \)-normal \(p \)-open subset of \(Y \).

Example 2.6.1

Let \(T_1 = \langle \{q\}, \{p, q\}, \{q, r\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X \rangle \) be a \(p \)-topology on \(X = \{p, q, r, s\} \) where

\[P^X = \{\varnothing, \{p\}, \{q\}, \{r\}, \{s\}, \{p, q\}, \{p, r\}, \{p, s\} \]

\[\{q, r\}, \{q, s\}, \{r, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X \}

and let \(T_2 = \langle \{a\}, \{a, b\}, \{a, c\}, Y \rangle \) be

a \(p \)-topology on \(Y = \{a, b, c\} \) where

\[P^Y = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, Y \}

The mapping defined as follows is a \(p \)-a homomorphism.
\(f : X \rightarrow Y \)

- \(f(p) = c, \quad f(q) = a, \quad f(r) = b, \quad f(s) = b \)

i) \(f \) is onto since every element in \(Y \) is the image of at least one element in \(X \).

ii) \(f(\{q\}) = \{a\}, \quad f(\{p, q\}) = \{a, c\}, \quad f(\{q, r\}) = \{a, b\} \)

- \(f(\{q, s\}) = \{a, b\}, \quad f(\{p, q, r\}) = \{a, b, c\}, \quad f(\{p, q, s\}) = \{a, b, c\} \)

Thus the image of every \(p \)-open set in \(T_1 \) is \(p \)-open set in \(T_2 \).

\(\therefore f \) is \(p \)-open mapping.

- \(f^-[\{a\}] = \{q\}, \quad f^-[\{a, b\}] = \{q, r, s\}, \quad f^-[\{a, c\}] = \{p, q\}, \quad f^-[Y] = X \)

Thus the inverse image of every \(p \)-open set in \(T_2 \) is a \(p \)-open set in \(T_1 \).

\(\therefore f \) is \(p \)-continuous

Hence \(f \) is both \(p \)-open and \(p \)-continuous.

iii) Let \(A = \{p, q\}, \quad B = \{q, r\}, \quad A, B \in T_1 \)

- \(f(\alpha(A, B)) = f(\{p, q, r\}) \) where \(\alpha(A, B) = A \cup B \)

- \(= \{a, b, c\} \)

- \(= Y \)
\[\beta(f(A), f(B)) = \beta([a, c], [a, b]) \]

\[= [a, b, c] \quad \text{where } \beta(A, B) = A \cup B \]

\[= Y \]

\[\therefore f(\alpha(A, B)) = \beta(f(A), f(B)), \; A, B \in T_i \]

Similarly, we can verify this property for other elements of \(T_i \).

\[\alpha(f^t(A^*), f^t(B^*)) = \alpha(f([a, b], [a, c])) \]

where \(A^* = [a, b] \), \(B^* = [a, c] \)

\[= \alpha([q, r, s], \{p, q\}) \]

\[= \{p, q, r, s\} \]

\[= X. \]

\[f^t(\beta(A^*, B^*)) = f^t(\beta([a, b], [a, c])) \]

\[= f^t([a, b, c]) \quad \text{where } \beta(A, B) = A \cup B \]

\[= [p, q, r, s] \]

\[= X. \]

\[\therefore \alpha(f^t(A^*), f^t(B^*)) = f^t(\beta(A^*, B^*)) \quad A^*, B^* \in T_i \]

Similarly, we can verify this property for other elements of \(T_i \).

\[\therefore f \text{ is a } p\text{-a homomorphism.} \]

Example 2.6.2 Let \(T_i = \{[a], [a, c], X\} \) be a

\(p \)-topology on \(X = \{a, b, c\} \) and

\[P^X = \{\emptyset, [a], [b], [c], [a, b], [a, c], [b, c], X\} \]

Let \(T_2 = \{[p], Y\} \) be a \(p \)-topology on \(Y = \{p, q\} \) and
The mapping defined as follows is a p-a homomorphism.

\[f : X \rightarrow Y \]

\[a \rightarrow p \]

\[b \rightarrow q \]

\[c \]

\[f(a) = p, \ f(b) = q, \ f(c) = p. \]

i) \(f \) is onto since every element in \(Y \) is the image of at least one element in \(X \).

ii) \(f([a]) = \{p\}, \ f([a, c]) = \{p\}, \ f[X] = Y \)

\[\therefore f \text{ is p-open.} \]

\[f^{-1}[\{p\}] = \{a, c\}, \ f^{-1}[Y] = X \]

\[\therefore f \text{ is p-continuous.} \]

\[\therefore f \text{ is both p-open and p-continuous.} \]

iii) Let \(A = \{a\}, \ B = \{a, c\} \)

\[f(\alpha(A, B)) = f(\alpha([a], \{a, c\}) = f([a, c]) = \{p\} \]

where \(\alpha(A, B) = A \cup B \).

\[\beta(f(A), f(B)) = \beta(f([a]), f([a, c])) \]

\[= \beta([p], \{p\}) \]

\[= \{p\} \]

where \(\beta(A, B) = A \cup B \)

\[\therefore f(\alpha(A, B)) = \beta(f(A), f(B)), \ A, B \in T_1 \]
\[
\alpha(f^\text{I}(\{p\}), f^\text{I}(Y)) = \alpha([a, c], X) = X
\]
\[
f^\text{I}(\beta(\{p\}, Y)) = f^\text{I}(Y) = X
\]
\[
\therefore \alpha(f^\text{I}(\{p\}), f^\text{I}(Y)) = f^\text{I}(\beta(\{p\}, Y))
\]
\[
\therefore f \text{ is a } p-a \text{ homomorphism.}
\]

Definition 2.6.2 Let p-a homomorphism
\[
f : (X, T, a) \rightarrow (Y, T^*, p)
\]
induce a mapping
\[
f_o : T \rightarrow T^* \text{ such that } f_o(A_o) = A_o^*,
\]
\[
f_o(X) = Y \text{ where } A_o, A_o^* \text{ are the minimal } p\text{-open subsets of } X \text{ and } Y \text{ respectively.}
\]

If \(f_o \) is onto, we call \(f \) is a p-a epimorphism. If \(f_o \) is one-one, we call \(f \) is a p-a monomorphism. If \(f_o \) is both one-one and onto, we call \(f \) is a p-a isomorphism.

Remark 2.6.1 If \(f : (X, T, a) \rightarrow (Y, T^*, \beta) \) is a p-a homomorphism and \(Y_o \) is a p-normal p-open subset of \(Y \), then \(f^\text{I}(Y_o) \) is not necessarily a p-normal p-open subset of \(X \). [Example 2.6.4.]

If \(f \) is one-one, then \(f^\text{I}(Y_o) \) is a p-normal p-open subset of \(X \). This is proved in the following proposition.

Proposition 2.6.3 If the p-a homomorphism \(f \) induces a one-one correspondence between the p-open subsets of \(X \) and the p-open subsets of \(Y \), then for any p-normal p-open subset \(Y_o \) of \(Y \), \(f^\text{I}(Y_o) \) is p-normal in \(X \).

Proof: Under the given condition, for any
\[
A \in T \text{ there exists an } A^* \text{ in } T^* \text{ such that }
\]
\[
A = f^\text{I}(A^*)
\]
Then \(\beta(Y_0, A^*) = \beta(A^*, Y_0) \) for all \(A^* \in T^* \).

\(f^1(Y_0) \) is a p-open subset of \(X \) and for any \(A \in T \), we have

\[
\alpha(f^1(Y_0), A) = \alpha(f^1(Y_0), f^1(A^*)) = f^1(\beta(Y_0, A^*))
\]

\[
= f^1(\beta(A^*, Y_0)), \quad \text{since } Y_0 \text{ is p-normal}
\]

\[
= \alpha(f^1(A^*), f^1(Y_0))
\]

\[
= \alpha(A, f^1(Y_0))
\]

Therefore \(f^1(Y_0) \) is p-normal in \((X, T, \alpha) \).

Example 2.6.4 Let \(T_1 = \{\{a\}, \{a, c\}, X\} \) be a p-topology on \(X = \{a, b, c\} \) and \(P^X = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} \).

Let \(T_2 = \{\{p\}, Y\} \) be a p-topology on \(Y = \{p, q\} \) and \(P^Y = \{\varnothing, \{p\}, \{q\}, Y\} \).

The mapping defined as follows is a p-a homomorphism. (Example 2.6.2)

\[
f : X \to Y, \quad f_0 : T_1 \to T_2
\]

\[
a \mapsto p
\]

\[
b \mapsto q
\]

\[
c
\]

Clearly \(f_0 \) is not one-one since \(f_0(\{a\}) = f_0(\{a, c\}) = \{p\} \in T_2 \). Now we see that whether p-a homomorphism \(f \) pulls back every p-normal p-open set to a p-normal p-open set or not with the help of the following table - 1 and table - 2.
In table 1, \(\{a\} \) is p-normal p-open set but \(f^{-1}(\{a\}) = \{a, c\} \) which is p-open in \(T \), but \(\{a, c\} \) is not p-normal p-open set in \(T \) since \(\alpha(\{a, c\}, [b]) \neq \alpha([b], \{a, c\}) \).

Therefore it is seen that a p-a homomorphism \(f \) does not pull back a p-normal p-open set to a p-normal p-open set unless its induced map is one-one.

Table - 1

Let \(T_1 = \{\{a\}, \{a, c\}, X\} \) be a p-topology on \(X = \{a, b, c\} \) and

\[
p^X = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}
\]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\phi)</th>
<th>({a})</th>
<th>({b})</th>
<th>({c})</th>
<th>({a,b})</th>
<th>({a,c})</th>
<th>({b,c})</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>(X)</td>
</tr>
<tr>
<td>({a})</td>
<td>(\phi)</td>
<td>({a})</td>
<td>({a,b})</td>
<td>({a,c})</td>
<td>({a,b})</td>
<td>({a,c})</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>({b})</td>
<td>(\phi)</td>
<td>({a,b})</td>
<td>({b})</td>
<td>({a})</td>
<td>({b})</td>
<td>([b])</td>
<td>({c})</td>
<td>(X)</td>
</tr>
<tr>
<td>({c})</td>
<td>(\phi)</td>
<td>({a,c})</td>
<td>({b,c})</td>
<td>({c})</td>
<td>({a})</td>
<td>({b})</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>({a,b})</td>
<td>(\phi)</td>
<td>({a,b})</td>
<td>({a})</td>
<td>({c})</td>
<td>({a,b})</td>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>({a,c})</td>
<td>(\phi)</td>
<td>({a,c})</td>
<td>([a])</td>
<td>({b})</td>
<td>(X)</td>
<td>({a,c})</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>({b,c})</td>
<td>(\phi)</td>
<td>(X)</td>
<td>({a})</td>
<td>({c})</td>
<td>({a,b})</td>
<td>({c})</td>
<td>({b,c})</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
</tr>
</tbody>
</table>
2.7 Pseudo Kernel of a p-a Homomorphism:

We define p-Kernel of a p-a homomorphism from one p-a space to another p-a space as follows:

Definition 2.7.1 Let \(f : (X, T, \alpha) \rightarrow (Y, T^*, \beta) \) be a p-a homomorphism from one p-a space \((X, T, \alpha)\) to another p-a space \((Y, T^*, \beta)\). Let \(A^*_0 \) be the minimal p-open set in \(Y \). Then \(f^!(A^*_0) \) is called the p-Kernel of \(f \).

Example 2.7.1 Let \(T_1 = \{\{p\}, \{p, q\}, X_1\} \) be a p-topology on \(X_1 = \{p, q, r\} \) where \(P^{X_1} = \{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, X_1\} \), and let \(T_2 = \{\{a\}, X_2\} \) be a p-topology on \(X_2 = \{a, b\} \) where \(P^{X_2} = \{\emptyset, \{a\}, \{b\}, X_2\} \).

The mapping defined as follows is a p-a homomorphism.
$f : X_1 \rightarrow X_2$

\[\begin{array}{ccc}
 p & \rightarrow & a \\
 & \nearrow & \\
 q & \rightarrow & a \\
 & \searrow & \\
 r & \rightarrow & b \\
\end{array} \]

i.e., $f(p) = a$, $f(q) = a$, $f(r) = b$

i) f is onto since every element in X_2 is the image of at least one element in X_1.

ii) $f([p]) = \{a\}$, $f([p, q]) = \{a\}$, $f(X_1) = X_2$

Thus the image of every p-open set in T_1 is a p-open set in T_2.

.: f is a p-open mapping.

$f^{-1}[\{a\}] = \{p, q\}$, $f^{-1}[\{b\}] = \{r\}$,

$f^{-1}[\{a, b\}] = f^{-1}(X_2) = X_1$

Thus the inverse image of every p-open set in T_2 is a p-open set in T_1.

.: f is p-continuous.

Hence f is both p-open and p-continuous.

iii) Let $A = \{p\}$, $B = \{p, q\}$, $A, B \in T_1$

$f(\alpha(A, B)) = f(\alpha(\{p\}, \{p, q\}))$

\[
= f([p, q]) \quad \text{where } \alpha(A, B) = A \cup B
\]

\[
= \{a\}
\]

$\beta(f(A), f(B)) = \beta(f(\{p\}), f(\{p, q\}))$
\[p(\{a\}, \{a\}) = \{a\} \] where \(\beta(A, B) = A \cup B \)

\[\therefore f(\alpha(A, B)) = \beta(f(A), f(B)), \ A, B \in T_1 \]

Similarly, this holds for other elements of \(T_1 \).

\[\alpha(f^{-1}(A^*), f^{-1}(B^*)) = \alpha(f^{-1}(\{a\}), f^{-1}(X_2)) \] where \(A^* = \{a\}, B^* = X_2 \)

\[= \alpha([p, q], X_1) \]

\[= X_1 \]

\[f^{-1}(\beta(A^*, B^*)) = f^{-1}(\beta([a], X_2)) \]

\[= f^{-1}(X_2) \]

\[= X_1 \]

\[\therefore \alpha(f^{-1}(A^*), f^{-1}(B^*)) = f^{-1}(\beta(A^*, B^*)), A^*, B^* \in T_2 \]

\[\therefore f \] is a \(p \)-\(a \) homomorphism.

Again \(f^{-1}(A_0^*) = f^{-1}(\{a\}) = \{p, q\} \) is the \(p \)-Kernel

of \(f \) where \(A_0^* = \{a\} \in T_2 \).

Proposition 2.7.1 If \(f : (X, T, \alpha) \to (Y, T^*, \beta) \) is a \(p \)-\(a \) homomorphism

from one \(p \)-\(a \) space \((X, T, \alpha) \) to another \(p \)-\(a \) space \((Y, T^*, \beta) \)

and \(A \) is its \(p \)-Kernel, then \(A \) is \(p \)-normal in \(X \) if \(f \) is one-to-one.

Proof: From proposition 2.6.2, we know that

\[\beta(A_0^*, N) = \beta(N, A_0^*) \quad \forall N \subseteq Y, \text{ where } A_0^* \text{ is the minimal } \]

\[\text{p-open subset of } Y \text{ and } A = f^{-1}(A_0^*) \]

Let \(M \subseteq X \), now

\[f^{-1}(\beta(A_0^*, N)) = f^{-1}(\beta(N, A_0^*)), N = f(M) \]

\[\Rightarrow \alpha(f^{-1}(A_0^*), f^{-1}(N)) = \alpha(f^{-1}(N), f^{-1}(A_0^*)) \]

\[\Rightarrow \alpha(A, f^{-1}(f(M)) = \alpha(f^{-1}(f(M)), A) \]

32
But if is one-one implies \(M = f^{-1}(f(M)) \)
\[\Rightarrow \alpha(A, M) = \alpha(M, A) \]
\[\therefore A \text{ is } p \text{ normal in } X. \]

2.8 Pseudo Inverse:

Definition 2.8.1
Let \((X, T)\) be a \(p\)-topological space and let \(\alpha\) be a pseudo algebraic function such that

\[\alpha : P^X \times P^X \to P^X \text{ (} P^X \text{ is the power set of } X). \]

\(B \in P^X\) is said to be \(p\)-inverse of \(A\) where \(A \in P^X\)

if \(\alpha(A, B) = A_0 = \alpha(B, A)\) where \(A_0\) is the minimal \(p\)-open set.

Then we write \(B = A^1\).

Proposition 2.8.1
Let \((X, T, \alpha)\) and \((Y, T^*, \beta)\) be two \(p\)-a spaces.

Let \(f : X \to Y\) be an onto \(p\)-a homomorphism.

Then \(f(A^1) = (f(A))^{-1}\).

Proof:
We prove that

\[\beta(f(A^1), f(A)) = A_0^* = \beta(f(A), f(A^{-1})) \]
\[\beta(f(A^1), f(A)) = \beta(f(A, A^{-1})) = \beta(A_0) = A_0^* \]
\[\beta(f(A), f(A^{-1})) = \beta(\alpha(A, A^{-1})) = \beta(A_0^*) = A_0^* \]

\[\therefore \beta(f(A^1), f(A)) = \beta(f(A), f(A^{-1})) \]
\[\therefore f(A^1) = (f(A))^{-1}. \text{ This completes the proof.} \]

We conclude this chapter with the following extension of

\[(ab)^{-1} = b^{-1}a^{-1}. \]
Proposition 2.8.2 Let \((X, T)\) be a \(p\)-topological space and let

\[
\alpha : P^X \times P^X \rightarrow P^X \quad (P^X \text{ is the power set of } X)
\]

be a function such that \(\alpha(A_0, A_n) = A_0\).

Let \(A, B \in P^X\) and \(A^{-1}\) and \(B^{-1}\) be the \(p\)-inverses of \(A\) and \(B\) respectively. Then \((\alpha(A, B))^{-1} = \alpha(B^{-1}, A^{-1})\).

Proof:

\[
\begin{align*}
\alpha(\alpha(A, B), \alpha(B^{-1}, A^{-1})) & = \alpha(\alpha(A, B), B^{-1}), A^{-1}) \\
& = \alpha(\alpha(A, \alpha(B, B^{-1})), A^{-1}) \\
& = \alpha(\alpha(A, A_0), A^{-1}) \\
& = \alpha(\alpha(A_0, A), A^{-1}) \\
& = \alpha(A_0, \alpha(A, A^{-1})) \\
& = \alpha(A_0, A_0) \\
& = A_0
\end{align*}
\]

This proves that

\([\alpha(A, B)]^{-1} = \alpha(B^{-1}, A^{-1})\).