List of Figures

2.1 Ring of particles affected by two different polarisations .. 18
2.2 Lines of force for a purely + GW (left), and for a purely GW (right). 19
3.1 Evolution of central density for the model bh as the core collapse progresses................. 41
3.2 The plus polarisation of gravitational wave amplitude drawn as the time progresses during the core infall and bounce. .. 50
3.3 The ratio of rotational to kinetic energy for model bh drawn as a function of time during the core infall and bounce. .. 51
3.4 Maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^9$ cm (Rigid rotation). .. 52
3.5 Maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^8$ cm. .. 53
3.6 Maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 5 \times 10^7$ cm. .. 54
3.7 Peak gravitational wave amplitude vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma = 1.32$.. 55
3.8 Peak gravitational wave amplitude vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma=1.30$...

3.9 Peak gravitational wave amplitude vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma=1.28$...

3.10 Maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=5$...

3.11 Maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=3$...

3.12 Maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=1$...

3.13 Maximum density at bounce vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^9$ cm (Rigid rotation) ...

3.14 Maximum density at bounce vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^8$ cm ...

3.15 Maximum density at bounce vs polytropic index for various rotational velocities and differential rotation parameter $A = 5 \times 10^7$ cm ...

3.16 Bounce density vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma=1.32$...

3.17 Bounce density vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma=1.30$...

3.18 Bounce density vs initial Ω for various degrees of differential rotation with polytropic index $\Gamma=1.28$...

3.19 Maximum density at bounce vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=5$...
3.20 Maximum density at bounce vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=3$. 68

3.21 Maximum density at bounce vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=1$. 69

3.22 Time of maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^9$ cm (Rigid rotation) 70

3.23 Time of maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 1 \times 10^8$ cm. 71

3.24 Time of maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter $A = 5 \times 10^7$ cm. 72

3.25 Time of maximum strain amplitude vs initial Ω for various degrees of differential rotation and with polytropic index $\Gamma = 1.32$ 73

3.26 Time of maximum strain amplitude vs initial Ω for various degrees of differential rotation and with polytropic index $\Gamma = 1.30$. 74

3.27 Time of maximum strain amplitude vs initial Ω for various degrees of differential rotation and with polytropic index $\Gamma = 1.28$ 75

3.28 Time of maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=5$. 76

3.29 Time of maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=3$. 77

3.30 Time of maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity $\Omega=1$. 78
3.31 Full width of time at half maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter

\[A = 1 \times 10^9 \text{ cm (Rigid rotation).} \]

3.32 Full width of time at half maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter

\[A = 1 \times 10^8 \text{ cm.} \]

3.33 Full width of time at half maximum strain amplitude vs polytropic index for various rotational velocities and differential rotation parameter

\[A = 5 \times 10^7 \text{ cm.} \]

3.34 Full width of time at half maximum strain amplitude vs initial \(\Omega \) for various degrees of differential rotation and with polytropic index \(\Gamma = 1.32 \).

3.35 Full width of time at half maximum strain amplitude vs initial \(\Omega \) for various degrees of differential rotation and with polytropic index \(\Gamma = 1.30 \).

3.36 Full width of time at half maximum strain amplitude vs initial \(\Omega \) for various degrees of differential rotation and with polytropic index \(\Gamma = 1.28 \).

3.37 Full width of time at half maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 5 \).

3.38 Full width of time at half maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 3 \).
3.39 Full width of time at half maximum strain amplitude vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 1 \). 87

3.40 \(\beta_b \) at bounce vs polytropic index for various rotational velocities and differential rotation parameter \(A = 1 \times 10^9 \) cm (Rigid rotation). 88

3.41 \(\beta_b \) at bounce vs polytropic index for various rotational velocities and differential rotation parameter \(A = 1 \times 10^8 \) cm. 89

3.42 \(\beta_b \) at bounce vs polytropic index for various rotational velocities and differential rotation parameter \(A = 5 \times 10^7 \) cm. 90

3.43 \(\beta \) at bounce vs initial \(\beta \) for various degrees of differential rotation with polytropic index \(\Gamma = 1.32 \). The different points of a single curve here are for different angular velocities. 91

3.44 \(\beta \) at bounce vs initial \(\beta \) for various degrees of differential rotation with polytropic index \(\Gamma = 1.30 \). The different points of a single curve here are for different angular velocities. 92

3.45 \(\beta \) at bounce vs initial \(\beta \) for various degrees of differential rotation with polytropic index \(\Gamma = 1.28 \). The different points of a single curve here are for different angular velocities. 93

3.46 \(\beta \) at bounce vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 5 \). 94

3.47 \(\beta \) at bounce vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 3 \). 95

3.48 \(\beta \) at bounce vs differential rotation parameter for various polytropic indices and rotational velocity \(\Omega = 1 \). 96
4.1 Growth of r-mode amplitude with time for different values of K, the differential rotation parameter, with magnetic field $B=0$...

4.2 Growth of r-mode amplitude with time for different values of K, the differential rotation parameter, with magnetic field $B_{14} = 4$...

4.3 Growth of r-mode amplitude with time for different values of K, the differential rotation parameter, with magnetic field $B_{14} = 10$...

4.4 Growth of r-mode amplitude with time for different values of K, the differential rotation parameter, with magnetic field $B_{14} = 20$...

4.5 Growth of r-mode amplitude with time for different values of magnetic field and with differential rotation parameter $K=0$...

4.6 Growth of r-mode amplitude with time for different values of magnetic field and with differential rotation parameter $K=1000$...

4.7 Growth of r-mode amplitude for different B and $K = 10^7$...

4.8 Growth of r-mode amplitude for different B and $K = 10^{12}$...

4.9 Angular velocity evolution for different K and $B_{14} = 0$...

4.10 Evolution of angular velocity during r-instability, for different values of K and with $B_{14} = 4$...

4.11 ω vs time for different k and $B_{14} = 10$...

4.12 ω vs time for different k and $B_{14} = 20$...

4.13 ω vs time for different B and $K=0$...

4.14 ω vs time for different B and $K=1000$...

4.15 ω vs time for different B and $K=10^7$...

4.16 ω vs time for different B and $K=10^{12}$...

4.17 Gravitational wave amplitude vs time for different K and $B_{14} = 0$...

xii
4.18 Gravitational wave amplitude vs time for different K and $B_{14} = 4$. . 142
4.19 Gravitational wave amplitude vs time for different K and $B_{14} = 10$. . 143
4.20 Gravitational wave amplitude vs time for different K and $B_{14} = 20$. . 144
4.21 Gravitational wave amplitude vs time for different B and K=0 145
4.22 Gravitational wave amplitude vs time for different B and K=1000 . . 146
4.23 Gravitational wave amplitude vs time for different B and K=107 . . 147
4.24 Gravitational wave amplitude vs time for different B and K=1012 . . 148
4.25 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent K and $B_{14}=0$. 149
4.26 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent K and $B_{14}=4$. 150
4.27 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent K and $B_{14}=10$. 151
4.28 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent K and $B_{14}=20$. 152
4.29 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent B and K=0 . 153
4.30 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent B and K=1000 . 154
4.31 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent B and K=107 . 155
4.32 Fourier transformed Gravitational wave amplitude vs frequency for dif­
ferent B and K=1012 . 156

xiii
4.33 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different K and $B_{14}=0$.

4.34 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different K and $B_{14}=4$.

4.35 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different K and $B_{14}=10$.

4.36 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different K and $B_{14}=20$.

4.37 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different B and $K=0$.

4.38 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different B and $K=1000$.

4.39 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different B and $K=10^7$.

4.40 Characteristic Gravitational wave amplitude vs frequency (with rms strain noises of LIGO, VIRGO and Advanced LIGO) for different B and $K=10^{12}$.

4.41 r-mode instability window in temperature for $B_{14} = 0$ and different K.

4.42 r-mode instability window in temperature for $B_{14} = 10$ and different K.
4.43 r-mode instability window in temperature for $K=0$ for different values of B. 167
4.44 r-mode instability window in temperature for $K=1000$ for different values of B 168
4.45 r-mode instability window in temperature for $K=10^6$ for different values of B. 169
4.46 r-mode instability window in temperature for $K=10^{12}$ for different values of B. 170
4.47 Angular velocity as a function of temperature for $B_{14} = 0$ and $K=0$.
Dotted curve is the critical curve for instability. ... 171
4.48 Angular velocity as a function of temperature for $B_{14} = 6$ and $K=0$.
Dotted line is the critical curve for instability. ... 172
4.49 Angular velocity as a function of temperature for $B_{14} = 10$ and $K=0$.
Dotted line is the critical curve for instability. ... 173
4.50 Angular velocity as a function of temperature for $B_{14} = 20$ and $K=0$.
Dotted line is the critical curve for instability. ... 174
4.51 Angular velocity as a function of temperature for $B_{14} = 0$ and $K=10^7$
Dotted line is the critical curve for instability. ... 175
4.52 Angular velocity as a function of temperature for $B_{14} = 6$ and $K=10^7$.
Dotted line is the critical curve for instability. ... 176
4.53 Angular velocity as a function of temperature for $B_{14} = 10$ and $K=10^7$
Dotted line is the critical curve for instability. ... 177
4.54 Angular velocity as a function of temperature for $B_{14} = 20$ and $K=10^7$
Dotted line is the critical curve for instability. ... 178
4.55 Angular velocity as a function of temperature for $B_{14} = 0$ and $K=10^{12}$.
Dotted line is the critical curve for instability. 179

4.56 Angular velocity as a function of temperature for $B_{14} = 6$ and $K=10^{12}$.
Dotted line is the critical curve for instability. 180

4.57 Angular velocity as a function of temperature for $B_{14} = 10$ and $K=10^{12}$.
Dotted line is the critical curve for instability. 181

4.58 Angular velocity as a function of temperature for $B_{14} = 20$ and $K=10^{12}$.
Dotted line is the critical curve for instability. 182