Chapter II

Fuzzy N-subgroups and fuzzy ideals

2.1. Prerequisites.

2.2. Fuzzy N-subgroup and fuzzy ideal of N.

2.3. Fuzzy N-subgroup and fuzzy ideal of an N-group E.

2.4. Fuzzy factor N-group.
Chapter II

Fuzzy N-subgroups and fuzzy Ideals

The concept of fuzzy N-subgroups and fuzzy ideals of a Near-ring N plays an important role in the area of abstract algebraic geometry. S. Abou Zaid [3] in 1991 introduced the notion of fuzzy sub-near-ring, fuzzy ideal and fuzzy prime ideal of a near-ring N. Kim and Jun considered the fuzzification of N-subgroups in a near-ring N. The concept of normalization of fuzzy ideals are applied to BCK-algebra [24] and Gamma ring [23]. In [29], this concept is generalized to N-subgroups of near-rings. In this chapter we study and investigate various characteristics of fuzzy ideals and fuzzy N-subgroups of a near-ring N and a near-ring group E. Using these concepts we finally define fuzzy factor N-group. The main results of this chapter have appeared in our paper [[63]].

This chapter is divided into four sections. The preliminary definitions and results of near-ring theory are presented in the first section. The second section contains some important properties of fuzzy N-subgroups and fuzzy ideals of N. It is shown that sum of a fuzzy left ideal and a fuzzy left N-subgroup of N is a fuzzy left N-subgroup of N while the sum of two fuzzy left ideals of N is a fuzzy left ideal of N. In section 2.3, the notions of fuzzy N-subgroups and fuzzy ideals of a near-ring group E are introduced, and various properties of fuzzy N-subgroups and fuzzy ideals of E are established. The last section contains the notion of fuzzy factor N-group. If μ is a fuzzy ideal of E then the set E/μ of all fuzzy cosets of μ is an N-group under certain binary compositions and this leads to the notion of fuzzy factor N-group of a fuzzy N-subgroup σ of E modulo μ.
Throughout our discussion, unless otherwise specified, N denotes a zero symmetric near-ring with unity and E a near-ring group.

2.1. Prerequisites

2.1.1. Definition: Let H be a non empty subset of a near-ring (N, +, .). If H is subgroup of (N, +), then H is called

(i) a right N-subgroup of N if HN ≤ H

(ii) a left N-subgroup of N if NH ≤ H

(iii) a sub near-ring of N if HH ≤ H

and (iv) an invariant sub near-ring of N if HN ≤ H and NH ≤ H.

2.1.2. Definition: A subset A of a near-ring group E is called an N-subgroup of E if A is a subgroup of (E, +) and NA ⊆ A.

2.1.3. Remarks: A left N-subgroup of N is an N-subgroup of N and vice-versa.

2.1.4. Definition: A sub near-ring A of N is called distributively generated if there is a multiplicatively sub semi group S of distributive elements of N and if the additive group (A, +) is generated by S.

2.1.5. Lemma: Intersection of two N-subgroups of E is an N-subgroup of E.

2.1.6. Lemma: Intersection of two left (right) N-subgroups of N is a left (right) N-subgroup of N.

Hence, intersection of two invariant sub near-rings of N is an invariant sub near-ring of N.

2.1.7. Lemma: If A is an N-subgroup of E and I is an left N-subgroup of N then for any x ∈ A, lx is an N-subgroup of A.
2.1.8. Definition: A normal subgroup A of E is called an **ideal** of E if $n(a + e) - ne \in A$ for all $n \in \mathbb{N}$, $a \in A$, $e \in E$.

2.1.9. Definition: Let I be an additive normal subgroup of N. Then I is called,

(i) a **right ideal** of N if $xn \in I$, for all $x \in I$, $n \in \mathbb{N}$.

(ii) a **left ideal** of N if $n(m + a) - nm \in A$, for all $n, m \in \mathbb{N}$, $a \in I$.

(equivalently if $n(a + m) - nm \in A$, for all $n, m \in \mathbb{N}$, $a \in I$)

(iii) an **ideal** of N if I is both right as well as left ideal of N.

2.1.10. Lemma: If A is a right N-subgroup of N and $x \in N$, then xA is a right N-subset of N. Thus xN is a right N-subset of N.

2.1.11. Lemma: If A is a left N-subgroup of N and B is a left ideal of N then $A + B$ is a left N-subgroup of N.

2.1.12. Lemma: If A and B are left ideals of N then $A + B$ is also a left ideal of N.

2.1.13. Lemma: If A and B are ideals of E then $A + B$ is also an ideal of E.

2.1.15. Lemma: If A is an ideal of E and B is an N-subgroup of E such that $A \subseteq B$, then A is an ideal of B.

2.1.16. Lemma: If A is an N-subgroup of E and B is an ideal of E then $A \cap B$ is an ideal of A.

2.1.17. Definition: If A is an ideal of E then the set $E/A = \{ e + A : e \in E \}$ forms an N-group under the followings operations:

(i) $(a + A) + (b + A) = (a + b) + A$, where $a, b \in E$.

(ii) $n(a + A) = na + A$, where $n \in \mathbb{N}$, $a \in E$.
This N-group \(E/A \) is called a **factor N-group**. If \(E = N \), \(A \) is an ideal of \(N \) and the condition (ii) is replaced by the condition \((a + A)(b + A) = (ab) + A\), where \(a, b \in N \), then \(N/A \) is called a **factor near-ring**. If \(A \) is a left ideal of \(N \) then \(N/A \) is an N-group denoted by \(_N(N/A) \).

2.1.18. **Lemma**: If \(A \) and \(B \) are ideals of \(E \) such that \(A \subseteq B \) then \(B/A \) is an ideal of \(E/A \).

2.1.19. **Lemma**: Let \(A \) be an ideal of \(E \) such that \(A \subseteq B \). Then \(B/A \) is an N-subgroup of \(E/A \) if and only if \(B \) is an N-subgroup of \(E \).

2.2 Fuzzy N-subgroup and fuzzy ideal of \(N \).

2.2.1. **Definition** [3]: Let \(\mu \) be a fuzzy subset of a near-ring \(N \). Then \(\mu \) is called

(i) a **fuzzy left N-subgroup** of \(N \) if \(\mu \) is a fuzzy subgroup of \((N, +)\) and \(\mu \) is a fuzzy left N-subset of \(N \) i.e. for \(x, y \in N \),

\[
\mu(x - y) \geq \wedge \{ \mu(x), \mu(y) \}
\]

and

\[
\mu(xy) \geq \mu(y)
\]

(ii) a **fuzzy right N-subgroup** of \(N \) if \(\mu \) is a fuzzy subgroup of \((N, +)\) and \(\mu \) is a fuzzy right N-subset of \(N \) i.e. for \(x, y \in N \),

(i) \(\mu(x - y) \geq \wedge \{ \mu(x), \mu(y) \} \)

(ii) \(\mu(xy) \geq \mu(x) \)

(iii) an **invariant sub-near-ring** if \(\mu \) is both left and fuzzy right N-subgroup of \(N \). A fuzzy invariant sub near-ring is also called a **fuzzy N-subgroup** of \(N \).

2.2.2. **Definition**: Let \(\mu \) be a fuzzy left (right) N-subgroup of \(N \). Then we write,
2.2.3. Definition: A fuzzy left(right or invariant) N-subgroup μ of N is called proper if $\mu_0 \neq N$.

2.2.4. Definition: A fuzzy left(right or invariant) N-subgroup μ of N is called non zero if μ_t, for all $t \in \text{Im} \mu$ is non zero.

2.2.5. Example: We consider the set $S = \{0, a, b, c\}$. Let \cdot and \cdot on S be defined as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>o</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>o</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>o</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>o</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>o</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>o</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>o</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Then $(S, +, \cdot)$ is a near-ring. We define $\mu : S \rightarrow [0,1]$ such that $\mu_\cdot(o) > \mu_\cdot(a) > \mu_\cdot(b) = \mu_\cdot(c)$. Then $\mu(x - y) \geq \wedge\{\mu_\cdot(x), \mu_\cdot(y)\}$ and $\mu_\cdot(xy) \geq \mu_\cdot(y)$ for all $x, y \in S$. Hence μ is a fuzzy left S-subgroup of S.

But $\mu_\cdot(ab) \npreceq \mu_\cdot(a)$ and hence μ is not a fuzzy right S-subgroup of S. Again considering the addition as above and \cdot as follows:

<table>
<thead>
<tr>
<th>\cdot</th>
<th>o</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>o</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>o</td>
<td>o</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>o</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

we get $(S, +, \cdot)$ is a near-ring. If $\theta : S \rightarrow [0,1]$ is defined as $\theta(0) > \theta(a) > \theta(b) = \theta(c)$ then θ is an invariant fuzzy sub-near-ring of S.

2.2.6. Lemma: Let μ be a fuzzy left (right) N-subgroup of N. Then the following assertions hold:
\(\begin{align*}
(i) & \quad \mu(0) \geq \mu(x), \forall x \in N. \\
(ii) & \quad \mu(x) \geq \mu(1), \forall x \in N \\
(iii) & \quad \mu(x) = \mu(-x), \forall x \in N \\
(iv) & \quad \mu(x - y) = \mu(0) \implies \mu(x) = \mu(y), \forall x, y \in N. \\
(v) & \quad \mu^* \text{ is a left(right) N-subgroup of } N.
\end{align*}\)

Proof: (i) and (ii) follow from theorem 1.3.22.

(iii) Let \(\mu\) be a fuzzy left N-subgroup of \(N\). Then we have,

\[
\mu(-x) = \mu(0 - x) \\
\geq \mu(0) \land \mu(x) \\
= \mu(x), \forall x \in N \\
\implies \mu(x) \geq \mu(-x).
\]

Thus \(\mu(-x) = \mu(x), \forall x \in N\)

(iv) Let \(\mu(x - y) = \mu(0)\), where \(x, y \in N\).

Then \(\mu(x) = \mu(x - y + y)\)

\[
\geq \mu(x - y) \land \mu(y) \\
= \mu(y) \quad \text{[by (i)]}
\]

and \(\mu(y) = \mu(y - x + x).\)

\[
\geq \mu(y - x) \land \mu(x) \\
= \mu(x - y) \land \mu(x) \\
= \mu(x)
\]

Hence \(\mu(x) = \mu(y)\).

The proof of (v) is a routine matter of checking. \(\blacksquare\)
2.2.7. Remark: The converse of the result 2.2.6(iv) is not true. Considering the example (i) in 2.2.5., we get µ is a fuzzy left S-subgroup of S and µ(b) = µ(c) but µ(b - c) = µ(b + c) = µ(a) < µ(0).

2.2.8. Lemma: Let µ and θ be fuzzy left(right) N-subgroups of N. Then the following are true:

(i) µ ♯ θ ≤ (µ ♯ θ)₀

(ii) µ ♯ θ = (µ ♯ θ)₀ if µ(0) = θ(0)

Proof: (i) Let x ∈ µ ♯ θ. Then µ(x) = µ(0) and θ(x) = θ(0). Hence (µ ♯ θ)(x) = (µ ♯ θ)(0) and this gives x ∈ (µ ♯ θ)₀ and thus µ ♯ θ ≤ (µ ♯ θ)₀.

(ii) Let x ∈ (µ ♯ θ)₀.

Then (µ ♯ θ)(x) = (µ ♯ θ)(0)

⇒ µ(x) ♯ θ(x) = µ(0) ♯ θ(0)

⇒ µ(x) = µ(0) and θ(x) = θ(0).

⇒ x ∈ µ ♯ θ and consequently (µ ♯ θ)₀ ⊆ µ ♯ θ. Thus the result follows.

2.2.9. Lemma: Let µ, θ and σ be fuzzy left(right) N-subgroups of N. Then µ ♯ σ ⊆ θ ⇔ µσ ⊆ θ.

Proof: Let µ ♯ σ ⊆ θ. Then for any x ∈ N, we have,

θ(x) = θ \left(\sum_{i=1}^{n} y_i z_i \right), \text{ where } x = \sum_{i=1}^{n} y_i z_i, y_i, z_i ∈ N, n ∈ \mathbb{Z}_+.

≥ \land_i (θ(y_i z_i) : y_i, z_i ∈ N)

≥ \land_i (µ(y_i) \land σ(z_i) : y_i, z_i ∈ N) \text{ for } µ ♯ σ ⊆ θ.

Hence θ(x) ≥ \land_i (µ(y_i) \land σ(z_i) : y_i, z_i ∈ N) \text{ for any } x = \sum_{i=1}^{n} y_i z_i : y_i, z_i ∈ N.
Therefore

\[\theta(x) \geq \bigvee_{x \in \bigoplus_{i=1}^{n} y_i z_i} \{ \bigwedge_{i=1}^{n} (\mu(y_i) \land \sigma(z_i)) \} : y_i, z_i \in N \}, i = 1, 2, \ldots, n, n \in \mathbb{Z}_+.\]

\[= \mu \sigma(x).\]

Thus \(\mu \sigma \subseteq \theta \). The converse part follows from 1.3.11(i).

2.2.10. Theorem: Let \(\mu \) be a fuzzy \(N \)-subgroup of \(N \). Then for any fuzzy subset \(\theta \) of \(N \), \(\mu \circ \theta \subseteq \mu \).

Proof: Let \(x \in N \) be such that \(x = ab \), where \(a, b \in N \). Then \(\mu \) being a fuzzy \(N \)-subgroup of \(N \), we have,

\[\mu(x) = \mu(ab) \geq \mu(a) \lor \mu(b).\]

Now if \(\mu(a) \lor \mu(b) = \mu(a) \) then \(\mu(a) \geq \mu(a) \land \theta(b) \)

and if \(\mu(a) \lor \mu(b) = \mu(b) \) then we have \(\mu(b) \geq \mu(a) \land \theta(b) \).

Therefore for any \(x = ab \) with \(a, b \in N \),

\[\mu(x) = \mu(ab) \geq \mu(a) \lor \mu(b) \geq \mu(a) \land \theta(b).\]

Thus,

\[\mu(x) \geq \bigvee_{x=ab} \{ \mu(a) \land \theta(b) : a, b \in N \} = (\mu \circ \theta)(x).\]

Hence \(\mu \circ \theta \subseteq \mu \).

2.2.11. Theorem: Let \(\mu \) and \(\theta \) be two fuzzy \(N \)-subgroups of \(N \). Then \(\mu \circ \theta \subseteq \mu \cap \theta \).

Proof: Let \(x \in N \) be such that \(x = ab \), where \(a, b \in N \). Then,

\[(\mu \cap \theta)(x) = \mu(x) \land \theta(x) \geq \mu(a) \land \theta(b).\]

Hence \((\mu \cap \theta)(x) \geq \bigvee_{x=ab} \{ \mu(a) \land \theta(b) : a, b \in N \} = (\mu \circ \theta)(x).\)

Thus \(\mu \circ \theta \subseteq \mu \cap \theta \).
We note that the above theorem also holds when μ is a fuzzy right N-subgroup and θ is a fuzzy left N-subgroup of N.

The proof of the following lemma is a routine matter of verification and so we omit it.

2.2.12. Lemma: Let μ and θ be two left (right) fuzzy N-subgroups of N. Then $\mu \cap \theta$ is also fuzzy left (right) N-subgroup of N.

2.2.13. Theorem: Let μ and θ be two fuzzy N-subgroups of N. Then $\mu \theta \subseteq \mu \cap \theta$.

Proof: From theorem 2.2.11. we have, $\mu \circ \theta \subseteq \mu \cap \theta$. Hence by theorem 2.2.9. $\mu \theta \subseteq \mu \cap \theta$.

2.2.14. Lemma: Let μ and θ be two fuzzy left (right) N-subgroups of N such that $\mu(0) = \theta(0)$. Then $\mu \subseteq \mu + \theta$ and $\theta \subseteq \mu + \theta$.

Proof: Let $x \in N$. Then $(\mu + \theta)(x) \geq \mu(x) \land \theta(0) = \mu(x)$ and consequently $\mu \subseteq \mu + \theta$.

Also $(\mu + \theta)(x) \geq \mu(0) \land \theta(x) = \theta(x)$ which gives $\theta \subseteq \mu + \theta$.

2.2.15. Lemma: Let μ be a fuzzy left (right) N-subgroup of N satisfying supremum condition. Then $\mu + \mu = \mu$.

Proof: By 2.2.14., $\mu \subseteq \mu + \mu$. Let $x \in N$. Then,

$$(\mu + \mu)(x) = \vee_{a+b \in N} \{\mu(a) \land \mu(b) : a, b \in N\}$$

$$= \mu(c) \land \mu(d)$$

for some $x = c + d$.

$$\leq \mu(x).$$

Hence $\mu + \mu \subseteq \mu$ and this proves the lemma.

2.2.16. Lemma: Let μ, θ and σ be fuzzy N-subgroups of N. Then $\mu \subseteq \theta, \sigma \subseteq \theta$ imply $\mu + \sigma \subseteq \theta$.

Proof: Let $x \in N$. Then,

$$(\mu + \sigma)(x) = \vee_{a+b \in N} \{\mu(a) \land \sigma(b) : a, b \in N\}$$
Thus the result follows.

2.2.17. Theorem: Let \(\mu, \theta \) and \(\sigma \) be fuzzy \(N \)-subgroups of \(N \) such that \(\mu(0) = \theta(0) \).

Then \((\mu + \theta)\sigma = \mu\sigma + \theta\sigma \).

Proof: By 2.2.14, \(\mu \subseteq \mu + \theta \) and \(\theta \subseteq \mu + \theta \).

Again, by 1.3.11.(ii), \(\mu\sigma \subseteq (\mu + \theta)\sigma \) and \(\theta\sigma \subseteq (\mu + \theta)\sigma \).

Thus by 2.2.16. we get \(\mu\sigma + \theta\sigma \subseteq (\mu + \theta)\sigma \).

Conversely, let \(x \in N \). Then,

\[
((\mu + \theta)\sigma)(x) = \bigvee_{i=1}^{n} \{ (\mu + \theta)(y_i) \wedge \sigma(z_i) : y_i, z_i \in N, i = 1, 2, \ldots, n \in Z_+ \}
\]

\[
= \bigvee_{i=1}^{n} \{ (\vee (\mu(p_i) \wedge \theta(q_i)) : p_i, q_i, y_i = p_i + q_i \wedge \sigma(z_i)) \}
\]

\[
: y_i, z_i \in N, i = 1, 2, \ldots, n \in Z_+ \}
\]

\[
= \bigvee_{i=1}^{n} \{ (\mu(p_i) \wedge \theta(q_i)) \wedge \sigma(z_i) : p_i, q_i, z_i \in N, i = 1, 2, \ldots, n \}
\]

\[
\leq \bigvee_{i=1}^{n} \{ (\wedge (\mu(p_i) \wedge \sigma(z_i'))) \wedge (\wedge (\theta(q_i') \wedge \sigma(z_k''))
\}

: p_i', q_i', z_i', z_k'' \in N, i = 1, 2, \ldots, k = 1, 2, \ldots, s \}
\]

\[
= \bigvee_{i=1}^{n} \{ (\mu\sigma)(u) \wedge (\theta\sigma)(v) : u, v \in N \}
\]

\[
= (\mu\sigma + \theta\sigma)(x)
\]

Thus \((\mu + \theta)\sigma \subseteq \mu\sigma + \theta\sigma \) and hence the result follows.

Using 1.2.9. and 1.3.20. we get the following:
2.2.18. **Lemma:** A fuzzy subset \(\mu \) of \(N \) is fuzzy left (right) \(N \)-subgroup of \(N \) if and only if \(\mu_t \), for all \(t \in \text{Im} \mu \), is a left (right) \(N \)-subgroup of \(N \).

2.2.19. **Lemma:** Let \(A \) be a non-empty subset of a near-ring \(N \). Then \(A \) is left (right) \(N \)-subgroup of \(N \) if and only if \(x_A \) is fuzzy left (right) \(N \)-subgroup of \(N \).

Proof: The proof follows from 1.2.10. and 1.3.21.

2.2.20. **Theorem:** The intersection of a non-empty family of fuzzy left (right) \(N \)-subgroups of \(N \) is a fuzzy left (right) \(N \)-subgroup of \(N \).

Proof: Let \(\{ \mu_i : i \in \Delta \} \) be an arbitrary collection of fuzzy left \(N \)-subgroups of a near-ring \(N \). Let \(x, y \in N \). Then we have,

\[
\left(\bigcap_{i \in \Delta} \mu_i \right) (x - y) = \wedge, \{ \mu_i (x - y) \} \geq \wedge, \{ \mu_i (x) \wedge \mu_i (y) \} \\
= (\wedge, \mu_i (x)) \wedge (\wedge, \mu_i (y)) \\
= \left(\bigcap_{i \in \Delta} \mu_i \right) (x) \wedge \left(\bigcap_{i \in \Delta} \mu_i \right) (y)
\]

Also \(\left(\bigcap_{i \in \Delta} \mu_i \right) (xy) = \wedge, \mu_i (xy) \geq \wedge, \mu_i (y) = \left(\bigcap_{i \in \Delta} \mu_i \right) (y) \). Thus we get the required result.

2.2.21. **Theorem:**[[63]] Let \(N \) and \(K \) be two near-rings. Let \(f : N \to K \) be a homomorphism. If \(\mu \) is fuzzy left (right) \(N \)-subgroup of \(N \) and \(\theta \) is fuzzy left (right) \(K \)-subgroup of \(K \) then

(i) \(f(\mu) \) is a fuzzy left (right) \(K \)-subgroup of \(K \) if \(f \) is onto.

and (ii) \(f^{-1}(\theta) \) is a fuzzy left (right) \(N \)-subgroup of \(N \).

Proof: (i) Let \(p, q \in K \). Then there exist \(x, y \in N \) such that \(f(x) = p \) and \(f(y) = q \).

So, \(f(x + y) = f(x) + f(y) = p + q \) and \(f(xy) = f(x)f(y) = pq \).

Now, \([f(\mu)](p - q) = \bigvee_{f(z) = p - q} \mu(z) \)
If \(\mu \) is a fuzzy left \(N \)-subgroup of \(N \) then

\[
[f(\mu)](pq) = \bigvee_{f(x)=p, f(y)=q} \mu(x) \\
\geq \bigvee_{f(x)=p, f(y)=q} \mu(xy) \\
\geq \bigvee_{f(y)=q} \mu(y) \\
= [f(\mu)](q).
\]

Thus \(f(\mu) \) is a fuzzy left \(K \)-subgroup of \(K \).

If \(\mu \) is a fuzzy right \(N \)-subgroup of \(N \) then similarly it can be shown that

\[
[f(\mu)](pq) \geq [f(\mu)](p).
\]

Thus the result follows.

(ii) Let \(x, y \in N \) and \(\theta \) be a fuzzy left \(K \)-subgroup of \(K \). Then we have,

\[
[f^{-1}(\theta)](x+y) = \theta(f(x+y)) \\
= \theta(f(x) + f(y)) \\
\geq \theta(f(x)) \wedge \theta(f(y)) \\
= f^{-1}(\theta)(x) \wedge f^{-1}(\theta)(y)
\]

Also

\[
[f^{-1}(\theta)](xy) = \theta(f(xy)) \\
= \theta(f(x)f(y)) \\
= \theta(f(y))
\]
Thus $f^{-1}(\theta)$ is a fuzzy left N-subgroup of N.

An alternative proof of the above theorem 2.2.21.(i) by means of level set is established in [63].

2.2.22. Theorem:
Let N and K be two near-rings and $f: N \rightarrow K$ be a homomorphism. Let μ be a fuzzy N-subgroup of N and θ be a fuzzy K-subgroup of K. Then,

(i) $[\mathcal{f}(\mu)](0') = \mu(0)$ and $f^{-1}(\theta)(0) = \theta(0')$ where 0 and $0'$ are zero elements of N and K respectively.

(ii) $f(\mu) \subseteq [f(\mu)]_0$ and the equality holds if μ has sup. property.

(iii) $[f(\mu)](x) = \mu(x)$ $\forall x \in N$ if μ is f-invariant.

(iv) $f^{-1}(\theta)_0 = [f^{-1}(\theta)]_0$

(v) $f^{-1}(\theta)$ is f-invariant.

(vi) $(f^{-1} \circ f)(\mu) = \mu$, if μ is f-invariant.

(vii) $(f \circ f^{-1})(\theta) = \theta$, if f is onto.

Proof:
(i) $[f(\mu)](0') = \vee_{x \in N} \mu(x) = \mu(0)$, by 2.2.6(i). Similarly $f^{-1}(\theta)(0) = \theta(0')$.

(ii) Let $y \in f(\mu)_0$. Then there exists $x_0 \in \mu_0$ such that $f(x_0) = y$. So, we get

$[f(\mu)](y) = \vee_{(x,y) \in \mu}[\mu(x) = \mu(0)]$, as $\mu(x_0) = \mu(0)$ and $f(x_0) = y$. Thus $y \in [f(\mu)]_0$.

Also let μ be with sup property. Let $y \in [f(\mu)]_0$. Then $[f(\mu)](y) = f(\mu)(0') = \mu(0)$. Thus

$\vee_{x \in N} \mu(x) = \mu(0)$, where $x \in N$.

By assumption, there exists $x_0 \in N$, such that $f(x_0) = y$ and $\mu(x_0) = \mu(0)$.

It follows that, $x_0 \in \mu_0$ and hence $y = f(x_0) \in f(\mu)_0$.

Thus $f^{-1}(\theta)$ is a fuzzy left N-subgroup of N.

An alternative proof of the above theorem 2.2.21.(i) by means of level set is established in [63].

2.2.22. Theorem:
Let N and K be two near-rings and $f: N \rightarrow K$ be a homomorphism. Let μ be a fuzzy N-subgroup of N and θ be a fuzzy K-subgroup of K. Then,

(i) $[\mathcal{f}(\mu)](0') = \mu(0)$ and $f^{-1}(\theta)(0) = \theta(0')$ where 0 and $0'$ are zero elements of N and K respectively.

(ii) $f(\mu) \subseteq [f(\mu)]_0$ and the equality holds if μ has sup. property.

(iii) $[f(\mu)](x) = \mu(x)$ $\forall x \in N$ if μ is f-invariant.

(iv) $f^{-1}(\theta)_0 = [f^{-1}(\theta)]_0$

(v) $f^{-1}(\theta)$ is f-invariant.

(vi) $(f^{-1} \circ f)(\mu) = \mu$, if μ is f-invariant.

(vii) $(f \circ f^{-1})(\theta) = \theta$, if f is onto.

Proof:
(i) $[f(\mu)](0') = \vee_{(x,y) \in \mu}[\mu(x) = \mu(0)]$, by 2.2.6(i). Similarly $f^{-1}(\theta)(0) = \theta(0')$.

(ii) Let $y \in f(\mu)_0$. Then there exists $x_0 \in \mu_0$ such that $f(x_0) = y$. So, we get

$[f(\mu)](y) = \vee_{x \in N} \mu(x) = \mu(0)$, as $\mu(x_0) = \mu(0)$ and $f(x_0) = y$. Thus $y \in [f(\mu)]_0$.

Also let μ be with sup property. Let $y \in [f(\mu)]_0$. Then $[f(\mu)](y) = f(\mu)(0') = \mu(0)$. Thus

$\vee_{x \in N} \mu(x) = \mu(0)$, where $x \in N$.

By assumption, there exists $x_0 \in N$, such that $f(x_0) = y$ and $\mu(x_0) = \mu(0)$.

It follows that, $x_0 \in \mu_0$ and hence $y = f(x_0) \in f(\mu)_0$.

Thus $f^{-1}(\theta)$ is a fuzzy left N-subgroup of N.

An alternative proof of the above theorem 2.2.21.(i) by means of level set is established in [63].
(iii) If $x \in N$, then, \[f(\mu)(f(x)) = \bigvee_{f(z) = f(x)} \mu(z) = \mu(x), \text{ as } \mu \text{ is } f\text{-invariant.} \]

(iv) Let $x \in f^{-1}(\theta_0)$. Then $f(x) \in \theta_0 \iff \theta(f(x)) = \theta(0') \iff \theta(f(x)) = f^{-1}(\theta)(0)$

$\iff f^{-1}(\theta)(x) = f^{-1}(\theta)(0) \iff x \in [f^{-1}(\theta)]_0$.

Thus $f^{-1}(\theta_0) = [f^{-1}(\theta)]_0$.

(v) Let $x, y \in N$ be such that $f(x) = f(y)$.

Then $[f^{-1}(\theta)](x) = \theta(f(x)) = \theta(f(y)) = [f^{-1}(\theta)](y)$.

Consequently, $f^{-1}(\theta)$ is f-invariant.

(vi) Let $x \in N$. Then

\[[(f^{-1} \circ f)(\mu)](x) = [f^{-1}(f(\mu))](x) \]

\[= f(\mu)(f(x)) \]

\[= \mu(x) \text{ by (iii)} \]

(vii) Let $y \in K$. Then

\[[(f \circ f^{-1})(\theta)](y) = [f(f^{-1}(\theta))](y) \]

\[= [f(f^{-1}(\theta))](x), \text{ for some } x \in N \text{ such that } f(x) = y. \]

\[= f^{-1}(\theta)(x) \]

\[= \theta(y). \]

Thus the result follows. \blacksquare

2.2.23. Definition[3] A fuzzy subset μ of a near-ring N is called a fuzzy left ideal of N if μ satisfies the following axioms:

(i) $\mu(x - y) \geq \land\{\mu(x), \mu(y)\}$

(ii) $\mu(x + y) = \mu(y + x)$
(iii) \(\mu[a(b + x) - a b] \geq \mu(x) \), \(\forall \ x, y, a, b \) in \(N \).

If the fuzzy subset \(\mu \) of \(N \) is a fuzzy normal subgroup of \((N,+) \) and satisfies the following condition, then \(\mu \) is called a \textit{fuzzy right ideal} of \(N \):

\[
\mu(xy) \geq \mu(x), \quad \text{for all } x, y \in N.
\]

If \(\mu \) is both right as well as left ideal of \(N \), then we say that \(\mu \) is a \textit{fuzzy ideal} of \(N \).

2.2.24. Example: We consider the near-ring \(S = \{0, a, b, c\} \) under the addition defined in the example 3.18. and multiplication as in the following table:

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

and \(\mu: S \rightarrow [0,1] \) is defined such that \(\mu(0) > \mu(a) > \mu(b) = \mu(c) \). Then \(\mu \) is a fuzzy ideal of \(S \).

2.2.25. Remarks: If \(\mu \) is a fuzzy left (right) ideal of \(N \) then the following are immediate:

(i) \(\mu(x) \leq \mu(0), \forall x \in N \)

(ii) \(\mu(x) = \mu(-x), \forall x \in N \)

(iii) \(\mu(x - y) = \mu(0) \Rightarrow \mu(x) = \mu(y). \)

(iv) \(\mu(1) \leq \mu(x), \forall x \in N. \)

2.2.26. Lemma:[3] Let \(a \in N \) and \(\langle a \rangle \) be the intersection of all ideals in \(N \) containing \(a \). If \(\mu \) is a fuzzy ideal of \(N \) then \(\mu(x) \geq \mu(a) \) for all \(x \in \langle a \rangle \).

2.2.27. Lemma: [3] Let \(A \) be a non-empty subset of a near-ring \(N \). Then \(A \) is a left
(right) ideal of N if and only if the characteristic function \(\chi_A \) is a fuzzy left (right) ideal of N.

2.2.28. Lemma: [15] Let \(\mu \) be a fuzzy subset of N. Then \(\mu \) is a fuzzy left (right) ideal of N if and only if \(\mu_t \), for all \(t \in \text{Im} \mu \), is a left (right) ideal of N.

2.2.29. Lemma: If \(\mu \) is a fuzzy left ideal of N then for all \(x, y, a, b \in N \),

\[
\mu[a(x+b)-ab] \geq \mu(x).
\]

Proof: Let \(x \in N \) such that \(\mu(x) = t \).

Then \(\mu[a(b+x)-ab] \geq \mu(x) = t \)

\(\Rightarrow a(b+x)-ab \in \mu_t \)

By 2.2.28, \(\mu_t \) is a left ideal of N. So, \(a(x+b)-ab \in \mu_t \)

Hence \(\mu[a(x+b)-ab] \geq t = \mu(x) \).

2.2.30. Lemma: The intersection of a non-empty family of fuzzy left (right) ideals of a nearring N is a fuzzy left (right) ideal of N.

Proof: Let \(\{ \mu_\lambda : \lambda \in \Delta \} \) be an arbitrary collection of fuzzy left ideals of N. Let \(x, y \in N \).

Now, \(\left(\bigcap_{\lambda \in \Delta} \mu_\lambda \right)(x-y) = \bigwedge \{ \mu_\lambda (x-y) : \lambda \in \Delta \} \)

\(\geq \bigwedge \{ \mu_\lambda (x) \wedge \mu_\lambda (y) : \lambda \in \Delta \} \)

\(= [\bigwedge \mu_\lambda (x) : \lambda \in \Delta] \wedge [\bigwedge \mu_\lambda (y) : \lambda \in \Delta] \)

\(= \left(\bigcap_{\lambda \in \Delta} \mu_\lambda \right)(x) \wedge \left(\bigcap_{\lambda \in \Delta} \mu_\lambda \right)(y) \)

\(\left(\bigcap_{\lambda \in \Delta} \mu_\lambda \right)(x+y) = \bigwedge \{ \mu_\lambda (x+y) : \lambda \in \Delta \} \)

\(= \bigwedge \{ \mu_\lambda (y+x) : \lambda \in \Delta \} \)
Also for any \(a, b \in N \), we have,
\[
\left(\bigcap_{\lambda \in \Delta} \mu_{\lambda} \right) [a(b + x) - ab] = \bigwedge_{\lambda} \{ \mu_{\lambda} [a(b + x) - ab] : \lambda \in \Delta \}
\geq \left[\bigwedge_{\lambda} \mu_{\lambda}(x) : \lambda \in \Delta \right]
= \left(\bigcap_{\lambda \in \Delta} \mu_{\lambda} \right)(x)
\]
Thus \(\left(\bigcap_{\lambda \in \Delta} \mu_{\lambda} \right) \) is a fuzzy left ideal of \(N \).

2.2.31. Lemma [3]: If \(\mu \) is a fuzzy right ideal and \(\sigma \) is a fuzzy left ideal of a near-ring \(N \), then \(\mu \circ \sigma \subseteq \mu \cap \sigma \)

2.2.32. Lemma [15]: Let \(A \) be an ideal of \(N \) and \(t < s (\neq 0), t, s \in [0,1] \). Then the fuzzy subset \(\mu \) of \(N \) defined by
\[
\mu(x) = s, \quad \text{if } x \in A
\]
\[
= t, \quad \text{otherwise}
\]
is a fuzzy ideal of \(N \).

In our following discussion if \(\mu \) is a fuzzy left (right) ideal of \(N \) then \(\mu_0 \) is defined as follows:
\[
\mu_0 = \{ x \in N : \mu(x) = \mu(0) \}.
\]

2.2.33. Theorem: If \(\mu, \theta, \sigma \) are any fuzzy left (right) ideals of \(N \), then
\begin{itemize}
\item[(i)] \(\mu_0 \cap \theta_0 \subseteq (\mu \cap \theta)_0 \)
\item[(ii)] \(\mu_0 \cap \theta_0 = (\mu \cap \theta)_0 \) if \(\mu(0) = \theta(0) \)
\end{itemize}
(iii) \(\mu \circ \theta \leq \sigma \iff \mu \theta \leq \sigma \)

(iv) \(\mu^* \) is a left (or right) ideal of \(N \)

2.2.34. Theorem: If \(\mu \) is a fuzzy right ideal and \(\theta \) is a fuzzy left ideal of \(N \) then

\[\mu \theta \leq \mu \cap \theta \]

Proof: Let \(x \in N \) and let \(x = \sum_{i=1}^{n} a_i b_i \), \(a_i, b_i \in N \).

Then we have,

\[\mu(x) = \mu(\sum_{i=1}^{n} a_i b_i) \]

\[\geq \land, \mu(a_i, b_i) \]

\[\geq \land, \mu(a_i) \]

and \(\theta(x) = \theta(\sum_{i=1}^{n} a_i b_i) \)

\[\geq \land, \theta(a_i, b_i) \]

\[= \land, \theta(a_i(0+b_i)-a,0), \text{ as N is zero symmetric.} \]

\[\geq \land, \theta(b_i) \]

Thus for every \(x = \sum_{i=1}^{n} a_i b_i \), \(a_i, b_i \in N \), we have

\[\mu(x) \land \theta(x) \geq \{ \land, \mu(a_i) \} \land \{ \land, \theta(b_i) \} = \land, \{ \mu(a_i) \land \theta(b_i) \} \]

Thus, \((\mu \cap \theta)(x) \geq \lor, \{ \mu(a_i) \land \theta(b_i) \} = (\mu \theta)(x) \).

As a consequence we get the required result. \(\Box \)

2.2.35. Theorem: If \(\mu \) is a fuzzy ideal of \(N \), then for any fuzzy subset \(\theta \) of \(N \) \(\mu \circ \theta \leq \mu \).

Proof: Let \(x \in N \) be such that \(x = ab \), where \(a, b \in N \).

As \(\mu \) is a fuzzy right ideal of \(N \), we have \(\mu(x) = \mu(ab) \geq \mu(a) \).
Next, since \(\mu \) is a fuzzy left ideal of \(N \) and \(N \) is zero symmetric, it follows that
\[
\mu(x) = \mu(ab) = \mu[\alpha(0 + b) - a0] \geq \mu(b).
\]

Hence as in 2.2.10. we get \(\mu(x) \geq (\mu \circ \theta)(x), \forall x \in N \). Thus the result follows. \(\blacksquare \)

2.2.36. Theorem:[[63]] If \(\mu \) is a fuzzy left ideal and \(\sigma \) is a fuzzy left \(N \)-subgroup of \(N \) then \(\mu + \sigma \) is a fuzzy left \(N \)-subgroup of \(N \).

Proof: Let \(x, y \in N \) and let \((\mu + \sigma)(x) \land (\mu + \sigma)(y) = (\mu + \sigma)(x) = k \).

Then for \(\varepsilon > 0 \), there exist \(p, q, r, s \in N \) with \(x = p + q \) and \(y = r + s \) such that
\[
k - \varepsilon < \mu(p) \land \sigma(q) \quad \text{and} \quad k - \varepsilon < \mu(r) \land \sigma(s)
\]

Hence \(k - \varepsilon < \mu(r), k - \varepsilon < \sigma(s), k - \varepsilon < \mu(p) \) and \(k - \varepsilon < \sigma(q) \).

Also \(\mu \) being fuzzy left ideal of \(N \), we have,
\[
\mu(p) \land \mu(q + r - q) \geq \mu(p) \land \mu(r) > k - \varepsilon
\]

Thus, \(\mu(p + (q + r - q)) > k - \varepsilon \).

\[
\Rightarrow \mu((p + q) + (r - q)) > k - \varepsilon
\]

\[
\Rightarrow \mu(x + r - q) > k - \varepsilon \quad \text{......... (1)}
\]

Also, \(k - \varepsilon < \sigma(s) \) and \(k - \varepsilon < \sigma(q) \) \(\Rightarrow \sigma(q + s) > k - \varepsilon \). \(\ität{.................(2)} \)

By (1) and (2) we have, \(\mu(x + r - q) > k - \varepsilon, \sigma(q + s) > k - \varepsilon \).

Now, \((\mu + \sigma)(x + y) = \vee_{x+y} \{\mu(u) \land \sigma(v)\} \)
\[
\geq \mu(c) \land \sigma(d)
\]
\[
\geq k - \varepsilon
\]

where \(c = x + r - q, d = q + s \) and \(c + d = x + y \).

Thus \((\mu + \sigma)(x + y) \geq k \).

Now we claim that \((\mu + \sigma)(-x) \geq (\mu + \sigma)(x) \).
Let \((\mu + \sigma)(x) = t\) and \(\varepsilon > 0\). Then there exist \(c, d \in N\) with \(x = c + d\) such that
\[
t - \varepsilon < \mu(c) \wedge \sigma(d)
\]
\[
= \mu(x - d) \wedge \sigma(-d)
\]
\[
= \mu(-d + x) \wedge \sigma(-d)
\]
\[
= \mu((-x + d)) \wedge \sigma(-d)
\]
\[
= \mu(-x + d) \wedge \sigma(-d)
\]
\[
\leq \vee_{x \in \mathbb{R}} \left\{ \left[\{ \mu(a) \wedge \sigma(b) \} : a, b \in N \right] \right\}
\]
\[
= (\mu + \sigma)(-x)
\]

Thus we get \((\mu + \sigma)(-x) \geq (\mu + \sigma)(x)\).

Next, let \((\mu + \sigma)(y) = m\). So for \(\delta > 0\) there exist \(f, g \in N\) with \(y = f + g\) such that,
\[
m - \delta < \mu(f) \wedge \sigma(g) < \mu(x(g + f) - xg) \wedge \sigma(xg)
\]
\[
= \mu(x(g + f) - xg) \wedge \sigma(xg), \text{ using } 2.2.29
\]
\[
= \mu(t) \wedge \sigma(w), \text{ where } x(f + g) = t + w.
\]

Hence, \((\mu + \sigma)(xy) \geq (\mu + \sigma)(y)\), for all \(x, y \in N\).

Therefore \(\mu + \sigma\) is a fuzzy left \(N\)-subgroup of \(N\). \(\Box\)

2.2.37. Theorem:[[63]] If \(\mu\) and \(\sigma\) are two fuzzy left ideals of \(N\) then \(\mu + \sigma\) is also a fuzzy left ideal of \(N\).

Proof: By 2.2.36. \(\mu + \sigma\) is a fuzzy subgroup of \((N, +)\).

Let \(y \in (\mu + \sigma)_\mathcal{I}\), where \(t \in \text{Im}(\mu + \sigma)\). Then \(t \in \text{Im}\mu\) or \(t \in \text{Im}\sigma\). If \(t \in \text{Im}\mu\) then there exist \(m, n \in N\) such that \(\mu(m) = t\) and \(y = m + n\) and \(\mu(m) < \sigma(n)\). Now if \(x \in N\), then,
\[
(\mu + \sigma)(x + y - x) = (\mu + \sigma)(x + m + n - x)
\]
\[
= (\mu + \sigma)(m' + x + n - x)\]
\[(\mu + \sigma)(x + y - x) = (\mu + \sigma)(m' + n')\]
\[= \bigvee_{m' + n' = x + y'} \{\mu(x') \land \sigma(y')\}\]
\[\geq \mu(m') \land \sigma(n')\]
\[\geq t\]

Thus \(x + y - x \in (\mu + \sigma)\), which implies \(\mu + \sigma\) is a fuzzy normal subgroup of \((N, +)\).

Also if possible let \(a(b + y) - ab \notin (\mu + \sigma)\), for some \(a, b \in N\).

Hence \((\mu + \sigma)[a(b + y) - ab] < t\)
\[
\Rightarrow \bigvee_{a(b+y) - ab = r+s} \{\mu(r) \land \sigma(s)\} < t
\]
\[
\Rightarrow \mu(r) \land \sigma(s) < t, \text{ for all } a(b + y) - ab = r + s, \text{.................(A)}
\]
\[
\Rightarrow \{\mu(a(b + y) - ab) \land \sigma(0)\} < t
\]
\[
\Rightarrow \mu(y) \land \sigma(0) < t
\]
\[
\Rightarrow \mu(y) < t, \text{ since } \sigma \text{ is a fuzzy left ideal } \sigma(0) < t \text{ is not possible.}
\]
\[
\Rightarrow y \notin \mu_i
\]

From (A), it can be proved that \(y \notin \sigma_i\). Thus \(y = m + n \notin \mu_i + \sigma_i\), which is a contradiction as \(m \in \mu_i\) and \(n \in \sigma_i\). Hence \(a(b + y) - ab \in (\mu + \sigma)\), for every \(a, b \in N\).

Therefore \(\mu + \sigma\) is a fuzzy left ideal of \(N\). \(\Box\)

2.2.38: Theorem:[15] Let \(N\) and \(K\) be two near-rings and \(f: N \to K\) be a homomorphism. If \(\mu\) and \(\theta\) are fuzzy left ideals of \(N\) and \(K\) respectively then

(i) \(f(\mu)\) is a fuzzy left ideal of \(K\) if \(f\) is onto.
(ii) $f^{-1}(\emptyset)$ is fuzzy left ideal of N.

2.2.39. **Theorem:**[[63]] Let N and K be two near-rings and $f: N \rightarrow K$ be an epimorphism If μ and σ are two fuzzy ideals of N then the following hold:

(i) $f(\mu + \sigma) = f(\mu) + f(\sigma)$

(ii) $f(\mu \circ \sigma) = f(\mu) \circ f(\sigma)$

(iii) $f(\mu \cap \sigma) \subseteq f(\mu) \cap f(\sigma)$

Proof: Let $y \in K$.

(i) $f(\mu + \sigma)(y) = \vee_{x \in N} \{f(x) + f(\mu + \sigma)(x)\}$

And for $\varepsilon > 0$ there exists $x_1 \in N$ with $f(x_1) = y$ such that

$$f(\mu + \sigma)(y) < (\mu + \sigma)(x_1) + \varepsilon/2.$$

For $\varepsilon > 0$ there exist $a_1, b_1 \in N$ with $x_1 = a_1 + b_1$ such that

$$(\mu + \sigma)(x_1) - \varepsilon/2 < \mu(a_1) \land \sigma(b_1).$$

Thus

$$f(\mu + \sigma)(y) < \mu(a_1) \land \sigma(b_1) + \varepsilon.$$

Next,

$$f(\mu + f(\sigma))(y) = \vee_{y = y_1 + y_2} \{f(\mu)(y_1) \land f(\sigma)(y_2)\}$$

$$\geq f(\mu)(f(a_1)) \land f(\sigma)(f(b_1)), y = y_1 + y_2 \text{ for some}$$

$$y_1, y_2 \in K \text{ and } y = f(x_1) = f(a_1) + f(b_1)$$

$$= f^{-1}(f(\mu))(a_1) \land f^{-1}(f(\sigma))(b_1)$$

$$\geq \mu(a_1) \land \sigma(b_1)$$

$$> f(\mu + \sigma)(y) - \varepsilon,$$ using (1)

Thus

$$f(\mu + f(\sigma))(y) \geq f(\mu + \sigma)(y), \forall y \in K.$$ In a similar manner it can be proved that

$$f(\mu + f(\sigma))(y) \leq f(\mu + \sigma)(y), \forall y \in K.$$
Hence $f(\mu + \sigma) = f(\mu) + f(\sigma)$.

(ii) $f(\mu \circ \sigma)(y) = \vee_{f(\circ)} f(\mu \circ \sigma)(x)$

$$< (\mu \circ \sigma)(x_1) + \varepsilon/2, \text{for some } x_1 \in N \text{ such that } f(x_1) = y$$

$$< \{\mu(a_1) \land \sigma(b_1)\} + \varepsilon \text{ for some } a_1, b_1 \in N \text{ such that } x_1 = a_1 b_1$$

$$\leq f^{-1}(f(\mu)(a_1) \land f^{-1}(f(\sigma))(b_1) + \varepsilon$$

$$= f(\mu)(f(a_1) \land f(\sigma)(f(b_1))) + \varepsilon$$

$$\leq (f(\mu) \circ f(\sigma))(f(a_1) f(b_1)) + \varepsilon$$

$$= (f(\mu) \circ f(\sigma))(y) + \varepsilon$$

Hence $f(\mu \circ \sigma)(y) \leq (f(\mu) \circ f(\sigma))(y)$. Similarly the reverse inequality can be proved. Thus

$$f(\mu \circ \sigma) = f(\mu) \circ f(\sigma).$$

(iii) Since $\mu \cap \sigma \subseteq \mu$ and $\mu \cap \sigma \subseteq \sigma$, we have $f(\mu \cap \sigma) \subseteq f(\mu) \cap f(\sigma)$.

2.2.40. Theorem: Let N and K be two near-rings and $f: N \to K$ be an epimorphism. Let μ and σ be two fuzzy ideals of N. Then $f(\mu \cap \sigma) = f(\mu) \cap f(\sigma)$ if μ or σ is f-invariant.

Proof: We need to prove $f(\mu \cap \sigma) \supseteq f(\mu) \cap f(\sigma)$. Let $y \in K$ and μ be f-invariant.

Let $[f(\mu) \cap f(\sigma)](y) = t$.

Then for any $\varepsilon > 0$,

$$t - \varepsilon < f(\mu)(y) \land f(\sigma)(y) = f(\mu)(y) \land (\vee_{f(\circ)} \sigma(x)).$$

$$\Rightarrow t - \varepsilon/2 < f(\mu)(y) \text{ and } t - \varepsilon/2 < (\vee_{f(\circ)} \sigma(x))$$

For $\varepsilon > 0$ there exists $x_1 \in N$ with $f(x_1) = y$ such that

$$\left(\vee_{f(\circ)} \sigma(x)\right) - \varepsilon/2 < \sigma(x_1)$$

This gives us $t - \varepsilon < f(\mu)(y)$ and $t - \varepsilon < \sigma(x_1)$
Thus \(t - \varepsilon < f(\mu(x_i)) \) and \(t - \varepsilon < \sigma(x_i) \). Consequently, \(t - \varepsilon < \mu(x_i) \) and \(t - \varepsilon < \sigma(x_i) \) as \(\mu \) is \(f \)-invariant.

Thus \(t - \varepsilon < \mu(x_i) \land \sigma(x_i) = (\mu \land \sigma)(x_i) \) where \(f(x_i) = y \).

\[
\leq \vee_{f(x)=y} (\mu \land \sigma)(x)
\]

\[
= f(\mu \land \sigma)(y)
\]

Hence \(f(\mu \land \sigma) \supseteq f(\mu) \land f(\sigma) \) and from 2.2.39(iii), the result follows. \qed

2.2.41. Theorem: Let \(f \) be a homomorphism from a near-ring \(N \) onto a near-ring \(K \). Let \(\mu \) and \(0 \) be two fuzzy ideals of \(K \). Then, \(f^{-1}(\mu \circ \theta) \subseteq f^{-1}(\mu \circ \theta) \).

Proof: Let \(x \in N \) and \(\left[f^{-1}(\mu) \circ f^{-1}(\theta) \right](x) = t \).

Now \(\left[f^{-1}(\mu) \circ f^{-1}(\theta) \right](x) = \vee_{x=a,b} \left\{ f^{-1}(\mu)(a) \land f^{-1}(\theta)(b) \right\} = \vee_{x=a,b} \left\{ \mu(f(a)) \land \theta(f(b)) \right\} \)

Then for any \(\varepsilon > 0 \) there exist \(a_i, b_i \in N \) with \(x = a_i b_i \) such that

\[
t - \varepsilon < \mu(f(a_i)) \land \theta(f(b_i)),
\]

\[
\leq (\mu \circ \theta)(f(a_i b_i))
\]

\[
= f^{-1}(\mu \circ \theta)(x)
\]

Hence \(f^{-1}(\mu) \circ f^{-1}(\theta) \subseteq f^{-1}(\mu \circ \theta) \). \qed

2.2.42. Theorem: Let \(f \) be a homomorphism from a near-ring \(N \) onto a near-ring \(K \). Let \(\mu \) and \(\sigma \) be two fuzzy ideals of \(N \). Then \(f(\mu \sigma) = f(\mu) f(\sigma) \).

Proof: Let \(y \in K \) and \(\varepsilon > 0 \). Let \(f(\mu \sigma)(y) = t \). Then there exists \(x_i \in N \) with \(f(x_i) = y \)

such that

\[
t - \varepsilon / 2 < (\mu \sigma)(x_i)
\]

\[
= \vee_{x_i} [\land \{ \mu(a_i) \land \sigma(b_i) \}] \text{ where } a_i, b_i \in N, x_i = \sum_{i=1}^{a} a_i b_i.
\]
Also for \(\varepsilon > 0 \) there exist \(u, v, \in N, x_1 = \sum_{i=1}^{n} u_i v_i \) such that

\[
(\mu \sigma)(x_1) - \varepsilon / 2 < \left[\bigwedge, \{ \mu(u_i) \land \sigma(v_i) \} \right]
\]

Therefore, \(t - \varepsilon < \left[\bigwedge, \{ \mu(u_i) \land \sigma(v_i) \} \right] \)

Moreover,

\[
[f(\mu)f(\sigma)](y) = \vee_y \left[\bigwedge, \{ f(\mu)(p_i) \land f(\sigma)(q_i) \} \right], \text{ where } p_i, q_i \in K, y = \sum_{i=1}^{n} p_i q_i. \quad \text{This gives us,}
\]

\[
[f(\mu)f(\sigma)](y) \geq \bigwedge, \{ f^{-1}(f(\mu)(u_i)) \land f^{-1}(f(\sigma)(v_i)) \}
\]

\[
\geq \bigwedge, \{ \mu(u_i) \land \sigma(v_i) \}
\]

\[
> t - \varepsilon
\]

Therefore, \([f(\mu)f(\sigma)](y) \geq [f(\mu \sigma)](y) \).

Conversely, let \([f(\mu)f(\sigma)](y) = t. \)

Since \([f(\mu)f(\sigma)](y) = \vee_y \left[\bigwedge, \{ f(\mu)(p_i) \land f(\sigma)(q_i) \} \right] \) where \(p_i, q_i \in K, y = \sum_{i=1}^{n} p_i q_i, \)

\[
= \vee_y \left[\bigwedge, \{ \vee_{f(z_i) = p_i} \mu(z_i) \land \vee_{f(w_i) = q_i} \sigma(w_i) \} \right]
\]

for any \(\varepsilon > 0 \) we have,

\[
t - \varepsilon < \left[\bigwedge, \{ \mu(n_i) \land \sigma(m_i) \} \right] \text{ for some } f(n_i) = p_i, f(m_i) = q_i.
\]

\[
\leq (\mu \sigma)(x) \text{ where } n_i, m_i \in N, x = \sum_{i=1}^{n} n_i m_i
\]
\[\leq \vee_{f(x,y)}(\mu \sigma)(z) \quad \text{as} \quad y = \sum_{i=1}^{n} p_i q_i = f(x) \]

\[= [f(\mu \sigma)](y) \]

Therefore \([f(\mu \sigma)f(\sigma)](y) \leq [f(\mu \sigma)](y)\) and this completes the proof. □

2.3 Fuzzy N-subgroup and fuzzy ideal of an N-group \(E\).

2.3.1. Definition:[63] Let \(\mu\) be a fuzzy subset of an N-group \(E\). Then \(\mu\) is said to be a fuzzy N-subgroup of \(E\) if for all \(n \in \mathbb{N}\) and \(x, y \in E\),

(i) \(\mu(x + y) \geq \mu(x) \wedge \mu(y)\)

(ii) \(\mu(x) = \mu(-x)\)

(iii) \(\mu(nx) \geq \mu(x)\)

2.3.2. Remarks: If \(\mu\) is a fuzzy N-subgroup of \(N\)-group \(E\), then for all \(x \in E\), the following are equivalent:

(i) \(\mu(-x) \geq \mu(x)\)

(ii) \(\mu(-x) \leq \mu(x)\)

(iii) \(\mu(x) = \mu(-x)\)

2.3.3. Example: We consider the Dihedral group \(Q = \{0, a, 2a, 3a, b, a + b, 2a + b, 3a + b\}\) over the zero near-ring \(N\). Then \(Q\) is an \(N\)-group. If a fuzzy subset \(\mu\) of \(Q\) is defined such that \(\mu(0) > \mu(2a) > \mu(b) = \mu(2a + b) > \mu(a) = \mu(a + b) = \mu(3a + b)\), then it is seen that \(\mu\) is a fuzzy N-subgroup of \(Q\).

2.3.4. Lemma: If \(\mu\) is a fuzzy N-subgroup of an N-group \(E\), then \(\mu^*\) is also an N-subgroup of \(E\).
Proof: It is obvious that \(\mu^* \) is a subgroup of \((E, +)\). Let \(n \in \mathbb{N} \) and \(x \in \mu^* \).

Then \(\mu(x) > 0 \) and \(\mu \) being a fuzzy N-subgroup of \(E \), we have \(\mu(nx) > \mu(x) > 0 \). Consequently, \(nx \in \mu^* \) and hence \(\mu^* \) is an N-subgroup of \(E \). □

2.3.5. Theorem: [[63]] A nonempty subset \(S \) of \(E \) is an N-subgroup of \(E \) if and only if the characteristic function \(\chi_S \) of \(S \) is a fuzzy N-subgroup of \(E \).

Proof: Let \(S \) be an N-subgroup of \(E \). Thus \(S \) is a subgroup of \((E, +)\) and hence \(\chi_S \) is a fuzzy subgroup of \((E, +)\). Also let \(n \in \mathbb{N} \) and \(x \in E \).

If \(x \in S \) then clearly \(nx \in S \) which gives \(\chi_S(nx) \geq \chi_S(x) \). Also if \(x \notin S \) then \(\chi_S(x) = 0 \) and thus the result follows.

Conversely, let \(\chi_S \) be a fuzzy N-subgroup of \(E \). Then clearly \(S \) is a subgroup of \((E, +)\). Let \(x \in NS \). Then there exists \(n \in \mathbb{N} \), \(y \in E \) such that \(x = ny \). Hence \(\chi_S(y) = 1 \). Also \(\chi_S(x) = \chi_S(ny) \geq \chi_S(y) = 1 \) gives \(x \in S \). Thus \(S \) is an N-subgroup of \(E \). □

2.3.6. Theorem: [[63]] A fuzzy subset \(\mu \) of \(E \) is a fuzzy N-subgroup of \(E \) if and only if \(\mu_t \), for all \(t \in \text{Im} \mu \), is an N-subgroup of \(E \).

Proof: Let \(\mu \) be a fuzzy N-subgroup of \(E \). Thus \(\mu_t \), for all \(t \in \text{Im} \mu \) is a subgroup of \((E, +)\).

Also let \(n \in \mathbb{N} \) and \(x \in \mu_t \). Then \(\mu(nx) \geq \mu(x) \geq t \). Hence \(nx \in \mu_t \). Thus \(\mu_t \), for all \(t \in \text{Im} \mu \), is an N-subgroup of \(E \).

Conversely, let \(n \in \mathbb{N} \) and \(x \in E \). Let \(\mu(x) = s \). Then \(x \in \mu_s \) and \(\mu_s \) being an N-subgroup of \(E \), we have \(nx \in \mu_s \) which shows \(\mu(nx) \geq \mu(x) \). This proves the result. □

2.3.7. Theorem: A fuzzy subset \(\mu \) of \(E \) is a fuzzy N-subgroup of \(E \) if and only if

\[
(i) \quad \mu(0) \geq \mu(x)
\]
(ii) $\mu(mx + ny) \geq \mu(x) \wedge \mu(y)$ for all $m, n \in \mathbb{N}$ and $x, y \in E$.

Proof: Let μ be a fuzzy N-subgroup of E.

Clearly $\mu(0) = \mu(-x) \geq \mu(x) \wedge \mu(-x) = \mu(x)$, for all $x \in E$.

Also,

$$\mu(mx + ny) \geq \mu(mx) \wedge \mu(ny)$$

$$\geq \mu(x) \wedge \mu(y)$$

for all $m, n \in \mathbb{N}$ and $x, y \in E$.

Conversely, we assume conditions (i) and (ii).

Now $\mu(x + y) = \mu(1x + 1y) \geq \mu(x) \wedge \mu(y)$ and

$$\mu(-x) = \mu(-1x + 0.0)$$

$$\geq \mu(x) \wedge \mu(0)$$

$$= \mu(x) .$$

Thus by remark 2.3.2, $\mu(x) = \mu(-x)$, for all $x \in E$.

Also

$$\mu(nx) = \mu(nx + m0)$$

$$\geq \mu(x) \wedge \mu(0)$$

$$= \mu(x)$$

where $n \in \mathbb{N}$ and $x \in E$.

Thus μ is a fuzzy N-subgroup of E. \[\square\]

The proof of the following theorem follows from 1.4.6.(vi).

2.3.8. Theorem: A fuzzy subset μ of E is a fuzzy N-subgroup of E if and only if

(i) $\mu(x - y) \geq \mu(x) \wedge \mu(y)$, for all $x, y \in E$.

and (ii) $n\mu \subseteq \mu$, for all $n \in \mathbb{N}$.
2.3.9. Theorem: [[63]] Let E and F be two N-groups and $f: E \to F$ be an N-epimorphism. Let μ be a fuzzy N-subgroup of E. Then $f(\mu)$ is a fuzzy N-subgroup of F.

Proof: By 1.2.14(i), $f(\mu)$ is a fuzzy subgroup of $(F, +)$. Now let $y \in F$ and $n \in N$. Then there exists $z \in E$ such that $f(z) = y$ and hence $f(nz) = ny$.

Now,

$$[f(\mu)](ny) = \{\bigvee_{f(z)=y} \mu(x) : x \in E\} \supseteq \{\bigvee_{f(z)=y} \mu(nz) : nz \in E\} = \{\bigvee_{f(z)=y} \mu(nz) : nz \in E\} \supseteq \{\bigvee_{f(z)=y} \mu(z) : z \in E\} = f(\mu)(y)$$

Thus $f(\mu)$ is a fuzzy N-subgroup of F. $lacksquare$

2.3.10. Theorem: [[63]] Let E and F be two N-groups and $f: E \to F$ be an N-homomorphism. Let μ be a fuzzy N-subgroup of F. Then $f^{-1}(\mu)$ is a fuzzy N-subgroup of E.

Proof: By 1.2.14(ii), $f^{-1}(\mu)$ is a fuzzy subgroup of $(E, +)$. Let $x \in E$ and $n \in N$. Then $f^{-1}(\mu)(nx) = \mu(f(nx)) = \mu(nx) f(x) \supseteq \mu f(x) = f^{-1}(\mu)(x)$.

Thus $f^{-1}(\mu)$ is a fuzzy N-subgroup of E. $lacksquare$

We omit the proof of the following theorem, as it is routine matter of verification.

2.3.11. Theorem: The intersection of a non-empty family of fuzzy N-subgroups of an N-group E is again a fuzzy N-subgroup of E.

2.3.12. Definition: [[63]] Let μ be a fuzzy subset of an N-group E. Then μ is said to be a fuzzy ideal of E if,

(i) μ is a fuzzy normal subgroup of the additive group E.
(ii) $\mu[n(a + x) - na] \geq \mu(x)$, for all $n \in \mathbb{N}$ and $a, x \in E$.

2.3.13. Example: We consider the near-ring $S = \{0, a, b, c\}$ under the addition and multiplication defined as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

If a fuzzy subset $\mu: S \to [0,1]$ is defined such that $\mu(0) > \mu(a) > \mu(b) = \mu(c)$, then it can be seen that μ is a fuzzy ideal of the near-ring group S.

2.3.14. Theorem: A fuzzy normal subgroup μ of $(E, +)$ is a fuzzy ideal of E if and only if one of the following holds:

(i) $\mu[-na + n(a + x)] \geq \mu(x)$, for all $n \in \mathbb{N}$ and $a, x \in E$.

(ii) $\mu[-na + n(x + a)] \geq \mu(x)$, for all $n \in \mathbb{N}$ and $a, x \in E$.

2.3.15. Lemma: If μ and θ are fuzzy ideals of E, then the following hold:

(i) $\mu(0) \geq \mu(x)$, for all $x \in E$.

(ii) $\mu(x) = \mu(-x)$ for all $x \in E$.

(iii) $\mu(x - y) = \mu(0)$ imply $\mu(x) = \mu(y)$ where $x, y \in E$.

(iv) $\mu_0 \cap \theta_0 \subseteq \left(\mu \cap \theta\right)_0$ and $\mu_0 \cap \theta_0 = \left(\mu \cap \theta\right)_0$ if $\mu(0) = \theta(0)$

(v) μ^* is an ideal of E.
2.3.16. Theorem: [[63]] Let \(S \) be a nonempty subset of \(E \). Then \(S \) is an ideal of \(E \) if and only if \(\chi_S \) is a fuzzy ideal of \(E \).

Proof: Let \(S \) be an ideal of \(E \). Hence \(\chi_S \) is a fuzzy normal subgroup of \((E, +)\), by 1.2.21. Let \(n \in \mathbb{N} \) and \(a, x \in E \). Then if \(x \in S \), then \(n(a + x) - na \in S \) which gives

\[
\chi_S[n(a + x) - na] = \chi_S(x).
\]

Also if \(x \notin S \), then \(\chi_S(x) = 0 \) and hence \(\chi_S[n(a + x) - na] \geq \chi_S(x) \).

Thus \(\chi_S \) is a fuzzy ideal of \(E \).

Conversely if \(\chi_S \) is fuzzy ideal of \(E \), then by 1.2.21, \(S \) is a normal subgroup of \((E, +)\).

Let \(n \in \mathbb{N} \), \(x \in S \) and \(a \in E \). Then \(\chi_S(x) = 1 \) and since \(\chi_S \) is fuzzy ideal of \(E \), \(\chi_S[n(a + x) - na] \geq \chi_S(x) = 1 \) which gives \(n(a + x) - na \in S \).

Consequently, \(S \) is an ideal of \(E \). □

2.3.17. Theorem: [[63]] A fuzzy subset \(\mu \) of \(E \) is a fuzzy ideal of \(E \) if and only if \(\mu_t \), for all \(t \in \text{Im} \mu \), is an ideal of \(E \).

Proof: Let \(\mu \) be a fuzzy ideals of \(E \). Then \(\mu_t \), for all \(t \in \text{Im} \mu \) is a normal subgroup of \((E, +)\).

Let \(n \in \mathbb{N} \), \(x \in \mu_t \) and \(a \in E \) where \(t \in [0, \mu(0)] \). Then \(\mu(x) \geq t \).

But \(\mu[n(a + x) - na] \geq \mu(x) \geq t \). Hence \(n(a + x) - na \in \mu_t \), and therefore we get the desired result.

The proof of the converse part is a routine matter of verification. □

The following theorem plays an important role in the determination of fuzzy prime ideals, fuzzy maximal ideals. The proof is a routine matter of verification and we omit it.
2.3.18. **Theorem:** Let A be an ideal of E. Then the fuzzy subset μ of E defined as follows is a fuzzy ideal of E:

$$
\mu(x) = \begin{cases}
t, & \text{if } x \in A, \\
s, & \text{otherwise},
\end{cases}
$$

where $t, s \in [0, 1]$ such that $s \leq t$ ($\neq 0$).

2.3.19. **Theorem:** Let E and F be two N-groups. Let $f: E \to F$ be an N-homomorphism. Let μ and θ be fuzzy ideals of E and F respectively. Then the following are satisfied:

(i) $[f(\mu)](0') = \mu(0)$, where 0 and $0'$ are zero element of E and F respectively.

(ii) $f^{-1}(\theta)(0) = \theta(0')$

(iii) $f(\mu_0) \subseteq [f(\mu)]_0$ and the equality holds if μ has sup. Property.

(iv) $[f(\mu)](f(x)) = \mu(x), \forall x \in E$ if μ is f–invariant.

(v) $f(\mu)$ is a fuzzy ideal of F, if f is onto.

(vi) $f^{-1}(\theta_0) = [f^{-1}(\theta)]_0$

(vii) $f^{-1}(\theta)$ is a fuzzy ideal of E.

(viii) $f^{-1}(\theta)$ is f–invariant.

(ix) $(f^{-1} \circ f)(\mu) = \mu$, if μ is f–invariant.

(x) $(f \circ f^{-1})(\theta) = \theta$, if f is onto.

Proof: We prove (v) and (vii) and the rest are easy to prove.

(v) Let $x, y \in F$. By 1.2.23(i), we have,

$$
f(\mu)(x - y) \geq f(\mu)(x) \wedge f(\mu)(y),$$

and

$$
f(\mu)(x + y) = f(\mu)(y + x).$$
Also let \(n \in \mathbb{N} \) and \(b, y \in F \). Since \(f \) is onto, there exists \(a, x \in E \) such that \(f(a) = b \) and \(f(x) = y \).

Now,

\[
f(\mu)[n(b + y) - nb] = \vee_{f(u) = n(b + y) - nb} \mu(u)
\]

\[
\geq \mu(n(a + x) - na), \text{ as } n(b + y) - nb = f[n(a + x) - na].
\]

Thus,

\[
f(\mu)[n(b + y) - nb] \geq \mu(x), \text{ whenever } f(x) = y.
\]

Therefore, \(f(\mu)[n(b + y) - nb] \geq \vee_{f(x) = y} \mu(x) \).

\[
= f(\mu)(y)
\]

Thus \(f(\mu) \) is a fuzzy ideal of \(F \).

(vii) By 1.2.23(ii), \(f^{-1}(\theta) \) is normal fuzzy subgroup of \((E,+) \). Let \(n \in \mathbb{N} \) and \(a, x \in E \).

Then,

\[
f^{-1}(\theta)[n(a + x) - na] = \theta[f\{n(a + x) - na\}]
\]

\[
= \theta[nf(a + x) - nf(a)]
\]

\[
= \theta[nf(a) + f(x) - nf(a)]
\]

\[
\geq \theta(f(x))
\]

\[
= f^{-1}(\theta)(x)
\]

Thus \(f^{-1}(\theta) \) is a fuzzy ideal of \(E \).

The following two theorems can be obtained as in 2.2.36. and 2.2.37.

2.3.20. Theorem: If \(\mu \) is a fuzzy ideal of \(E \) and \(\theta \) is a fuzzy \(N \)-subgroup of \(E \), then \(\mu + \theta \) is a fuzzy \(N \)-subgroup of \(E \).

2.3.21. Theorem: If \(\mu \) and \(\theta \) are fuzzy ideals of \(E \), then \(\mu + \theta \) is a fuzzy ideal of \(E \).
2.3.22. Theorem: The intersection of a non-empty family of fuzzy ideals of an N-group is again a fuzzy ideal of E.

2.4. Fuzzy factor N-group

2.4.1. Definition:[15] Let μ be a fuzzy ideal of E and $a \in E$. Then the fuzzy subset $a + \mu$ defined by $(a + \mu)(x) = \mu(x - a)$, for all $x \in E$, is called a fuzzy coset of μ.

2.4.2 Lemma:[[63]] If μ is a fuzzy ideal of E, then $(a + \mu)(nx) \geq \mu(x) \land \mu(a)$, for all $n \in \mathbb{N}$ and $a, x \in E$.

2.4.3. Lemma:[[63]] Let μ be a fuzzy ideal of E and $a, b \in E$. Then

$$a + \mu = b + \mu \text{ if and only if } \mu(b - a) = \mu(0).$$

Proof: Let $a + \mu = b + \mu$, where $a, b \in E$.

Then $\mu(b - a) = (a + \mu)(b) = (b + \mu)(b) = \mu(0)$.

Conversely, let $\mu(b - a) = \mu(0)$.

Then for $x \in E$, $(a + \mu)(x) = \mu(x - a) = \mu(x - b + b - a)$

$$\geq \mu(x - b) \land \mu(b - a)$$

$$= \mu(x - b), \quad \text{by 2.3.15(i)}$$

$$= (b + \mu)(x)$$

Thus $a + \mu \geq b + \mu$.

Similarly we get $b + \mu \geq a + \mu$ and the result follows. □

2.4.4. Lemma:[[63]] Let μ be a fuzzy ideal of E and $a, b \in E$.

Then $a + \mu = b + \mu$ if and only if $-a + \mu = -b + \mu$.
Proof: Let \(a, b \in E \).

Then \(a + \mu = b + \mu \)

\[\Leftrightarrow \mu(b - a) = \mu(0) \]

\[\Leftrightarrow \mu(-a + b) = \mu(0) \]

\[\Leftrightarrow \mu((-a) - (-b)) = \mu(0) \]

\[\Leftrightarrow -b + \mu = -a + \mu. \]

2.4.5 Lemma: Let \(\mu \) be a fuzzy ideal of \(E \). Then for any \(x, y \in E \),

\(x + \mu = y + \mu \) if and only if \(x + \mu_0 = y + \mu_0 \).

Proof: Let \(x + \mu = y + \mu \), where \(x, y \in E \). Then \(\mu(x - y) = \mu(0) \). This gives

\(x - y \in \mu_0 \) and hence \(x + \mu_0 = y + \mu_0 \). Converse part is straightforward. \(\square \)

The theorem 2.3.15.(iii) is restated below and an alternative proof is given using the notion of fuzzy cosets.

2.4.6 Lemma: Let \(\mu \) be a fuzzy ideal of \(E \). Then for any \(x, y \in E \),

\[\mu(x - y) = \mu(0) \Rightarrow \mu(x) = \mu(y). \]

Proof: Let \(x, y \in E \). Then, \(\mu(x - y) = \mu(0) \)

\[\Rightarrow x + \mu = y + \mu \]

\[\Rightarrow (x + \mu)(0) = (y + \mu)(0) \]

\[\Rightarrow \mu(0 - x) = \mu(0 - y) \]

\[\Rightarrow \mu(-x) = \mu(-y) \]

\[\Rightarrow \mu(x) = \mu(y). \] \(\square \)
2.4.7. Theorem: Let \(\mu \) be a fuzzy ideal of \(E \). Let \(E/\mu \) be the set of all fuzzy cosets of the fuzzy ideal \(\mu \). Then \(E/\mu \) is an \(N \)-group under addition and scalar multiplication defined as follows: For \(n \in \mathbb{N} \) and \(a, b \in E \),
\[
(a + \mu) + (b + \mu) = (a + b) + \mu
\]
and \(n(a + \mu) = na + \mu \).

Proof: Let us first prove that the compositions are well defined.

Let \(a, b, u, v \in E \) such that \(a + \mu = u + \mu \) and \(b + \mu = v + \mu \).

Then \(\mu(u-a) = \mu(0) \) and \(\mu(v-b) = \mu(0) \).

Now, \(\mu((u + v) - (a + b)) = \mu(u + v - b - a) \)
\[
= \mu((u + v - b) - a)
\]
\[
= \mu(-a + (u + v - b))
\]
\[
= \mu((-a + u) + (v - b))
\]
\[
\geq \mu(-a + u) \land \mu(v - b)
\]
\[
= \mu(u - a) \land \mu(v - b)
\]
\[
= \mu(0)
\]
Thus \((a + b) + \mu = (u + v) + \mu \).

Also let \(n \in \mathbb{N} \) and \(a + \mu = b + \mu \), where \(a, b \in E \).

Then \(\mu(b - a) = \mu(0) \).

Now, \(\mu(nb - na) = \mu\{n(a + (-b + a)) - na\} \)
\[
\geq \mu(-(-b + a))
\]
\[
= \mu(-b + a)
\]
\[
= \mu(a - b).
\]
Thus \[na + \mu = nb + \mu. \]

Hence the compositions are well defined.

It is straightforward to verify that \(E/\mu \) is a group under addition defined as above.

Next let \(m, n \in \mathbb{N} \) and \(a \in E.\)

Then, (i) \[(m + n)(a + \mu) = (m + n)a + \mu = (m + n)a + \mu = (ma + na) + \mu = (ma + \mu) + (na + \mu) = m(a + \mu) + n(a + \mu).\]

(ii) \[(mn)(a + \mu) = (mn)a + \mu = m(na) + \mu = m(na + \mu) = m(n(a + \mu)).\]

(iii) It is obvious that \(1(a + \mu) = a + \mu. \)

Thus \(E/\mu \) is an N-group. \(\square \)

2.4.8. Theorem:\,[63] Let \(\mu \) be a fuzzy ideal of \(E. \) Then for any \(a, b \in E, \)

\[\{ x \in E : x + \mu = a + \mu \} + \{ x \in E : x + \mu = b + \mu \} = \{ x \in E : x + \mu = (a + b) + \mu \}. \]

Proof: If \(x = y + z \) such that \(y + \mu = a + \mu \) and \(z + \mu = b + \mu, \) then we have,

\[x + \mu = (y + z) + \mu. \]

\[= (y + \mu) + (z + \mu) \]

\[= (a + \mu) + (b + \mu) \]

\[= (a + b) + \mu. \]
Also let, \(x + \mu = (a + b) + \mu \).

Now, \(\mu (a + b - x) = (x + \mu)(a + b) \)

\[= ((a + b) + \mu)(a + b) \]

\[= \mu(0). \]

If \(y \in E \), then \(((x - b) + \mu)(y) = \mu(y - (x - b)) \)

\[= \mu(y + b - x) \]

\[= (x + \mu)(y + b) \]

\[= (a + b + \mu)(y + b) \]

\[= \mu((y + b) - (a + b)) \]

\[= \mu(y - a) \]

\[= (a + \mu)(y). \]

Thus \((x - b) + \mu = a + \mu \), and since \(x = (x - b) + b \), so the result follows. ⚫

2.4.9. Theorem:([63]) Let \(\sigma \) be a fuzzy N-subgroup of \(E \). A fuzzy subset \(\sigma/\mu \) of the N-group \(E/\mu \) is defined as follows:

\[\sigma/\mu(a + \mu) = \vee_{x \in (a + \mu)} \sigma(x) \text{ where } a, x \in E. \]

Then \(\sigma/\mu \) is a fuzzy N-subgroup of \(E/\mu \).

Proof: Let \(a + \mu, b + \mu \in E/\mu \).

Then, \(\sigma/\mu((a + \mu) + (b + \mu)) = \sigma/\mu(a + b + \mu) \)

\[= \vee_{x + \mu = (a + b) + \mu} \sigma(x) \]

\[= \vee_{x + \mu = (a + \mu) + (b + \mu)} \sigma(x) \]

\[= \vee_{y + \mu = a + \mu, z + \mu = b + \mu} \sigma(y + z) \]
\[\geq \bigvee_{y + \mu = a + \mu} \bigvee_{z + \mu = b + \mu} \sigma(y) \land \sigma(z)\]

\[= \left(\bigvee_{y + \mu = a + \mu} \sigma(y)\right) \land \left(\bigvee_{z + \mu = b + \mu} \sigma(z)\right)\]

\[= \sigma/\mu(a + \mu) \land \sigma/\mu(b + \mu)\]

Also since \(a + \mu \in E/\mu\), \(-(a + \mu) = -a + \mu\). So we have,

\[
\sigma/\mu(-(a + \mu)) = \sigma/\mu(-a + \mu)
\]

\[= \bigvee_{x + \mu = -a + \mu} \sigma(-x)\]

\[= \bigvee_{x + \mu = a + \mu} \sigma(-x)\]

\[= \bigvee_{x + \mu = a + \mu} \sigma(x)\]

\[= \sigma/\mu(a + \mu)\]

Also let \(x + \mu \in E/\mu\), \(n \in \mathbb{N}\). Then

\[
\sigma/\mu(n(x + \mu)) = \sigma/\mu(nx + \mu)
\]

\[= \bigvee_{y + \mu = nx + \mu} \sigma(y)\]

\[\geq \bigvee_{z + \mu = nx + \mu} \sigma(nz)\]

\[= \bigvee_{n(x + \mu) = n(z + \mu)} \sigma(nz)\]

\[\geq \bigvee_{(x + \mu) = (z + \mu)} \sigma(nz)\]

\[\geq \bigvee_{(x + \mu) = (z + \mu)} \sigma(z)\]

\[= \sigma/\mu(x + \mu)\]

Hence \(\sigma/\mu\) is a fuzzy N-subgroup of \(E/\mu\).

2.4.10. Definition:([63]) The fuzzy N-subgroup \(\sigma/\mu\) of the N-group \(E/\mu\) defined as in 2.4.9.

is called fuzzy factor N-group of \(\sigma\) with respect to \(\mu\).
2.4.11. Theorem: Let \(\sigma \) be a fuzzy N-subgroup and \(\mu \) be a fuzzy ideal of \(E \). Then the mapping \(f: E \rightarrow E/\mu \) given by \(f(x) = x + \mu \), \(x \in E \) is an N-epimorphism whose kernel is \(\mu_0 \) and \(f(\sigma) = \sigma/\mu \).

Proof: Let \(x, y \in E \), \(n \in \mathbb{N} \).

Then \(f(x + y) = (x + y) + \mu \)

\[
= (x + \mu) + (y + \mu)
\]

\[
= f(x) + f(y)
\]

This shows \(f \) is an N-homomorphism.

Also whenever \(x + \mu \in E/\mu \), we have \(x \in E \) such that \(f(x) = x + \mu \) and thus \(f \) is onto.

Let \(x \in \text{Ker} f \Leftrightarrow f(x) = \mu \Leftrightarrow x + \mu = \mu \Leftrightarrow \mu(x) = \mu(0) \Leftrightarrow x \in \mu_0 \).

This proves that \(\text{Ker} f = \mu_0 \).

Next, we have

\[
f(\sigma)(x + \mu) = \vee_{y \in f^{-1}(x+\mu)} \sigma(y)
\]

\[
= \vee f(y)_{y + \mu = x + \mu} \sigma(y)
\]

\[
= \vee_{y + \mu = x + \mu} \sigma(y)
\]

\[
= \sigma/\mu(x + \mu)
\]

Hence \(f(\sigma) = \sigma/\mu \).
2.4.12. Theorem: Let E and F be two N-groups and $f: E \to F$ be an N-epimorphism. Let μ and σ be fuzzy ideals of E such that $\mu, = \{x : \mu(x) = \mu(0) = i\} \subseteq \ker f$. If $\varphi : E/\mu \to F$ is defined such that $\varphi(x + \mu) = f(x)$ then φ is an N-epimorphism with $\varphi(\sigma/\mu) = f(\sigma)$.

Proof: First we show that φ is well defined.

Let $x + \mu, y + \mu \in E/\mu$ such that $x + \mu = y + \mu$.

Then $\mu(y - x) = \mu(0)$ and hence $y - x \in \mu \subseteq \ker f$.

$$\Rightarrow f(y - x) = 0.$$

Also $\varphi(y + \mu) = f(y) = f(y - x + x) = f(y - x) + f(x) = \varphi(x + \mu)$.

It is easy to verify that φ is an N-epimorphism.

Let $y \in F$.

Then, $\varphi(\sigma/\mu)(y) = \vee_{x + \mu \in \sigma/\mu}(\sigma/\mu)(x + \mu)$

$$= \vee_{x \in f^{-1}(y)}(\sigma/\mu)(x + \mu)$$

$$= \vee_{x \in f^{-1}(y)}[\vee_{x + \mu \in \sigma}(\sigma(z))$$

$$= \vee_{x \in f^{-1}(y)} \sigma(z)$$

$$= f(\sigma)(y).$$

Thus we get the required result. \blacksquare