CHAPTER II

THE CESARO-DENJOY-BOCHNER SCALE OF INTEGRATION

1. Introduction

Extension of special Denjoy integral to Cesaro-Perron integrals for real valued functions is due to J.C. Burkill [8, 9] who introduced a scale of Perron type integrals, the C_nP integrals, such that the strength of the integrals is increased with n. Sargent [20, 21] also extended the special Denjoy integral to the Cesaro-Denjoy integrals for real valued function by introducing a scale of Denjoy type integrals, the C_nD integrals. Sargent also proved that the C_nP -integrals and the C_nD -integrals are equivalent. We extend the Denjoy-Bochner integral introduced in Chapter I to Cesaro-Denjoy-Bochner integral for vector valued function by introducing a scale of integrals, the C_nD_{XB} integrals, which are such that the strength of the integrals is increased with n.

2. Preliminaries

Definition 2.2.1. Let $F: [a, b] \to \chi$ and let $t_0 \in [a, b]$. Let n be a positive integer. If there are constants $\alpha_1, \alpha_2, \ldots, \alpha_n$ depending on t_0 but not on h such that
\(F(t_0 + h) - F(t_0) = h \alpha_1 + \frac{h^2}{2!} \alpha_2 + \cdots + \frac{h^n}{n!} \alpha_n = O(h^n) \)

then \(\alpha_n \) is called the strong Peano derivative of \(F \) at \(t_0 \), of order \(n \) and is denoted by \(F^{(n)}(t_0) \). It is easily seen that if \(F^{(n)}(t_0) \) exists then \(F^{(k)}(t_0) \) (\(1 \leq k \leq n \)) exists. In particular \(F^{(n)}(t_0) \) is the strong derivative of \(F \) at \(t_0 \). We shall write for convenience \(F^{(n)}(t_0) = F(t_0) \).

Let \(n \) be any non-negative integer. If \(F^{(n)}(t_0) \) exists, we write

\[
E_n(t_0, t) = E_n(F; t_0, t) = \frac{n!}{(t-t_0)^n} \left[F(t) - \sum_{k=0}^{n} \frac{(t-t_0)^k}{k!} F^{(k)}(t_0) \right], \quad t \neq t_0
\]

Clearly then \(E_n(F; t_0, t) \) is strongly continuous. Let \(F^{(n)} \) exist in \([a, b]\). Let

\[
\Omega_n(c, d) = \max \left\{ \| a \| \| E_n(c, t) \|, \| a \| \| E_n(d, t) \| \right\}, \quad a \in \mathbb{R}, \quad c \leq t \leq d \leq a
\]

Then \(F \) is said to be strongly \(AC \) over a set \(E \subset [a, b] \) if \(F^{(n)} \) exists in \([a, b]\) and for arbitrary \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that for all finite collection of non-overlapping intervals \((a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m)\) with end points in \(E \) and \(\sum_{r=1}^{m} (b_r - a_r) < \delta \) we have

\[
\sum_{r=1}^{m} \Omega_n(a_r, b_r) < \varepsilon.
\]
The function F is said to be strongly $C_n G_*$ in $[a,b]$ if F is strongly continuous on $[a,b]$ and if we can write $[a,b] = \bigcup E_i$, where E_i's are non-overlapping closed sets and F is strongly $C_n G_*$ over each E_i. (Note that the continuity of F is necessary only for $n=0$. For $n>1$ it is a consequence of the existence of $F_{(n)}$).

The definition of $C_n G_*$ for real functions is as in [19, p.231] or [7] according as $n=0$ or >0.

Lemma 2.2.2. If $F: [a,b] \to \mathbb{R}$ is such that at a point $t_0 \in [a,b]$ $F_{(n)}(t_0)$ exists then for each $x^* \in X^*$, $(x^*F)_{(n)}(t_0)$ exists and $(x^*F)_{(n)}(t_0) = x^*(F_{(n)}(t_0))$. If F is strongly $C_n G_*$ in $[a,b]$ then for all $x^* \in X^*$, x^*F is a numerical valued $C_n G_*$ function in $[a,b]$.

Clearly $(x^*F)_{(1)}(t_0) = x^*(F_{(1)}(t_0))$. Supposing $(x^*F)_{(r)}(t_0)$ to be true it can be proved that $(x^*F)_{(r+1)}(t_0) = x^*(F_{(r+1)}(t_0))$ for each $x^* \in X^*$ and so the first part is clear. Also since for each $x^* \in X^*$

$$|\varepsilon_n(x^*F; t_0, t)| = |x^*\varepsilon_n(F; t_0, t)| \leq \|x^*\| \|\varepsilon_n(F; t_0, t)\|$$

we have

$$\omega_n(x^*F; c, d) \leq \|x^*\| \omega_n(F; c, d)$$

and hence the result follows.
Lemma 2.2.3. Let $F : [a, b] \rightarrow \chi$ be strongly continuous and let $F_{(n)}$ exist in $[a, b]$ and let

$$\phi(t) = \int_t^b F(f) df$$

for $a \leq t \leq b$;

then

i) $\phi_{(n+1)}(f) = F_{(n)}(f)$ for all $f \in [a, b]$

ii) If $F_{(n+1)}$ exists at a point t_0, then $\phi_{(n+2)}(t_0)$ exists and equals $F_{(n+1)}(t_0)$.

iii) If F is A_{C_n} over a set $E \subset [a, b]$ then ϕ is $A_{C_{n+1}}$ over E.

Proof. Let t_0 and $t_0 + h$ belong to $[a, b]$. Now

$$(2.2.1) \quad \phi(t_0 + h) - \phi(t_0) = \int_{t_0}^{t_0 + h} F(f) df$$

$$= \int_{t_0}^{t_0 + h} [F(t_0) + (f - t_0) F_{(1)}(t_0) + \cdots + \frac{(f - t_0)^n}{n!} F_{(n)}(t_0) + \frac{(f - t_0)^{n+1}}{(n+1)!} \varepsilon_{n}(F; t_0, f)] df$$

$$= h F(t_0) + \frac{h}{2!} F_{(1)}(t_0) + \cdots + \frac{h^{n+1}}{(n+1)!} F_{(n+1)}(t_0)$$

$$+ \int_{t_0}^{t_0 + h} \frac{(f - t_0)^n}{n!} \varepsilon_{n}(F; t_0, f) df.$$

Since $\|\varepsilon_{n}(F; t_0, t_0 + h)\| \to 0$ as $h \to 0$, we have

$$\lim_{h \to 0} \frac{(n+1)!}{h^{n+1}} \int_{t_0}^{t_0 + h} \frac{(f - t_0)^n}{n!} \varepsilon_{n}(F; t_0, f) = \Theta.$$

So, by (2.2.1) $\phi_{(n+1)}(t_0)$ exists and equal to $F_{(n)}(t_0)$.
Exactly as above we can show that $\phi_{(n+1)}$ exists and equal to $F_{(n+1)}$ at those points t_o where $F_{(n+1)}$ exists.

Now by (2.2.1) we have

$$E_{n+1}(\phi; t_o, t_o+h) = \frac{(n+1)!}{h^{n+1}} \int_{t_o}^{t_o+h} \frac{(h-t)}{n!} E_n(F; t_o, f) df$$

from which (iii) follows.

Lemma 2.2.4. Let $n > 0$ and $F: [a, b] \rightarrow \mathbb{R}$ be such that $F_{(n)}$ exists in $[a, b]$ and F be strongly AC_{n+} in a closed set $E \subset [a, b]$. Then F is strongly AC_{n-} in E.

Proof. It can be shown as in [21, Lemma 1] that if $a < c < d < b$ then

$$\| F_{(n)}(d) - F_{(n)}(c) \| \leq A \omega_n(F; c, d)$$

where A depends only on n. Hence if $c, d \in E$ then

$$\left| \| F_{(n)}(d) \| - \| F_{(n)}(c) \| \right| \leq A \omega_n(F; c, d)$$

and therefore the real valued function $\| F_{(n)} \|$ is absolutely continuous on E. The set E being closed, $\| F_{(n)} \|$ is bounded on E. Let M be the upper bound of $\| F_{(n)} \|$ on E. Then since

$$E_{n-1}(F; t_o, t_1) = \frac{t_1 - t_o}{n} \left[F_{(n)}(t_o) + E_n(F; t_o, t_1) \right]$$

we have

$$\omega_{n-1}(F; c, d) \leq \frac{|d - c|}{n} \left[M + \omega_n(F; c, d) \right]$$
whenever \(c, d \in E \). Thus \(F \) is strongly \(AC_{n-1} \) on \(E \).

Corollary 2.2.5. If \(F \) is strongly \(AC_{n} G_{+} \) on \([a,b]\) then \(F \) is strongly \(AC_{n-1} G_{+} \) on \([a,b]\).

Lemma 2.2.6. If a function \(\phi : [a,b] \to X \) is strongly \(AC_{n} G_{+} \) and \(\phi_{(n+1)} = \theta \) almost everywhere then \(\phi_{(n)} \) is constant.

Proof. Let \(x^{*} \in X^{*} \) be arbitrary. By Lemma 2.2.2 \(x^{*} \phi \) is numerical valued \(AC_{n} G_{+} \) function and moreover

\[
(x^{*} \phi)_{(n+1)} = x^{*} \phi_{(n+1)} = x^{*} \theta = 0
\]

almost everywhere. So, \((x^{*} \phi)_{(n)} \) is constant [7, Corollary 17]. But \(\phi_{(n)} \) exists and \((x^{*} \phi)_{(n)} = x^{*} \phi_{(n)} \).

Since \(x^{*} \) is arbitrary, the lemma is proved.

3. The \(AC_{n} D_{+} B \) –integral

Definition 2.3.1. A function \(f : [a,b] \to X \) is said to be \(AC_{n} D_{+} B \) (Cesaro-Denjoy-Bochner) integrable if there exists a function \(F : [a,b] \to X \) which is strongly \(AC_{n} G_{+} \) on \([a,b]\) and \(F_{(n+1)} = f \) almost everywhere in \([a,b]\). Then \(F_{(n)} \) is called an indefinite \(AC_{n} D_{+} B \) –integral of \(f \).
and \(\int_{c_n}^b - \int_{c_n}^a \) is called its definite \(C_n D_B \) integral in \([a,b]\) and is denoted by,

\[
(C_n D_B) \int_a^b f(t) \, dt.
\]

The definite integral of an integrable function is unique by Lemma 2.2.6. It can be verified that the class of all \(C_n D_B \) integrable functions in \([a,b]\) is a linear space and the \(C_n D_B \) integral is a linear operator from this linear space to \(X \), and this operator is additive on abutting intervals.

The \(D_B \) integral, as defined in Chapter I, is such that a function \(f: [a,b] \rightarrow X \) is \(D_B \) integrable in \([a,b]\) if there is a function \(F: [a,b] \rightarrow X \) such that \(F \) is strongly \(AC, G, \) in \([a,b]\) and \(AD F = f \) almost everywhere in \([a,b]\), where \(AD F \) denotes the strong approximate derivative of \(F \). This definition of the \(D_B \) integral is equivalent to that given in [24]. The definition of the \(C_B D_B \) integral here differs with that of \(D_B \) integral in using the strong derivative \(F^{(i)} \) instead of strong approximate derivative \(AD F \). Thus the \(C_B D_B \) integral is less comprehensive than the \(D_B \) integral in Chapter I. Nevertheless, we shall see that the \(C_B D_B \) integral is strictly more general than the Lebesgue-Bochner integral. We remark in passing that the \(C_B D_B \) integral will coincide with the \(D_B \) integral in Chapter I (and hence with the special
Denjoy-Bochner integral in [24]) if the indefinite $D_x B$-integral F satisfies the additional condition that for each $t_0 \in [a, b]$ there is $M = M(t_0)$ such that

$$\| F(t) - F(t_0) \| \leq M |t - t_0|$$

for all t in some neighbourhood of t_0, (see Lemma 3 of [2]). On the other hand $C_0 D_x B$-integral is analogous to the DB-integral defined in [22, p.45].

Theorem 2.3.2. If f is $C_n D_x B$-integrable then f is strongly measurable.

Proof. Let $x^* \in X^*$ be arbitrary. By hypothesis there is a function $F : [a, b] \rightarrow X$ which is strongly $AC_n G_x$ and $F_{(n+1)} = f$ almost everywhere. So, by Lemma 2.2.2 $x^* F$ is $AC_n G_x$ and $(x^* F)_{(n+1)} = x^* f$ almost everywhere. Thus $x^* f$ is $C_n D_x -$integrable (or, equivalently $C_n P -$integrable) scalar function. Hence $x^* f$ is measurable (see [4]). Since x^* is arbitrary, f is weakly measurable.

Now $F(1), F(2), \ldots, F(n)$ exist everywhere and $F_{(n+1)} = f$ almost everywhere. Since F is continuous, the range of F is separable. Let X_0 be the closure of the space spanned by the range of F. So, X_0 is separable. Since

$$\lim_{h \rightarrow 0} \frac{F(t+h) - F(t)}{h} = F_{(1)}(t),$$
so \(F_{(1)}(t) \in X_0 \) for all \(t \in [a, b] \). So, \(\frac{2!}{h^h} [F(t+h) - F(t)] \in X_0 \) for all \(h \neq 0 \). Hence its limit

\[
F_{(1)}(t) = X_0 \text{ for all } t \in [a, b].
\]

After finite number of steps we can show that \(F_{(1)}(t), F_{(2)}(t), \ldots, F_{(n)}(t) \) belong to \(X_0 \) for all \(t \in [a, b] \). Therefore

\[
\frac{(n+1)!}{h^{n+1}} [F(t+h) - \sum_{k=0}^{n} \frac{h^k}{k!} F_{(k)}(t)] \in X_0
\]

for all \(h \neq 0 \) and for all \(t \in [a, b] \). Hence the limit \(F_{(n+1)}(t) \), if it exists, is in \(X_0 \). Since \(F_{(n+1)}(t) \) exists and equals \(f(t) \in X_0 \) for almost all \(t \in [a, b] \). Thus \(f \) is essentially separably valued.

Hence by [15, p.72, Theorem 3.5.3] \(f \) is strongly measurable.

Theorem 2.3.3. If \(f \) is Lebesgue-Bochner integrable in \([a,b] \) then \(f \) is \(C_0 \)-integrable in \([a,b] \) and the integrals are equal.

Proof. If \(f \) is Lebesgue-Bochner integrable in \([a,b] \) then its indefinite integral \(F \) is strongly absolutely continuous in \([a,b] \) [15, p.83, Theorem 3.7.11] and \(f \) is the strong derivative of \(F \) almost everywhere in \([a,b] \) [15, p.68, Corollary 2]. Since a strongly absolutely continuous function is strongly \(AC_0 \), the result follows.

Theorem 2.3.4. If \(f \in C_{n-1} \)-integrable in \([a,b] \) then it is \(C_n \)-integrable in \([a,b] \) and the integrals are equal.
Proof. By the $C_{n-1} D^* B$ integrability of f there is a function, say F, which is strongly $A C_{n-1} G^*$ and $F_{(n)} = f$ almost everywhere and $F_{(n-1)}$ is the $C_{n-1} D^* B$ indefinite integral of f. Since F is strongly continuous, writing

$$\phi(t) = \int_a^t F'(f) \, df$$

we get by Lemma 2.2.3, that the function ϕ is strongly $A C_{n} G^*$ and $\phi_{(n)}(t) = F_{(n-1)}(t)$ everywhere and $\phi_{(n+1)}(t) = F_{(n)}(t) = f(t)$ almost everywhere in $[a,b]$. Thus f is $C_{n} D^* B$ integrable in $[a,b]$. The rest is clear.

Theorem 2.3.5. If $f : [a,b] \to X$ is $C_{n} D^* B$ integrable in $[a,b]$ and

$$F(t) = (C_{n} D^* B) \int_a^t f(f) \, df , \, t \in [a,b]$$

then F is $C_{n-1} D^* B$ integrable in $[a,b]$.

Proof. Let $\phi : [a,b] \to X$ be the function which is strongly $A C_{n} G^*$ and $\phi_{(n+1)} = f$ almost everywhere in $[a,b]$. By definition $\phi_{(n)}(t) - \phi_{(n)}(a) = F(t)$ for all $t \in [a,b]$. Also by Corollary 2.2.5, ϕ is strongly $A C_{n-1} G^*$ in $[a,b]$. Hence $F(t) + \phi_{(n)}(a)$ is $C_{n-1} D^* B$ integrable in $[a,b]$. Since $\phi_{(n)}(a)$ is a constant, F is $C_{n-1} D^* B$ integrable in $[a,b]$.
4. Integration by parts for \(C_\eta D_\nu B \)-integral

Lemma 2.4.1. If \(n \) is any positive integer then

\[
(2.4.1) \quad \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} \gamma! = 0 \quad \text{for} \quad i = 0, 1, \ldots, n-1
\]

\[
= n! \quad \text{for} \quad i = n
\]

\[
(2.4.2) \quad \sum_{\gamma=0}^{n-k} (-1)^{\gamma} \binom{n}{\gamma} \binom{n-\gamma}{k} = 0 \quad \text{for} \quad k = 0, 1, \ldots, n-1
\]

\[
= 1 \quad \text{for} \quad k = n
\]

Proof. The relation (2.4.1) is well known. To prove (2.4.2) we have, when \(0 \leq k \leq n \)

\[
I = \sum_{\gamma=0}^{n-k} (-1)^{\gamma} \binom{n}{\gamma} \binom{n-\gamma}{k} = \frac{1}{k!} \sum_{\gamma=0}^{n-k} (-1)^{\gamma} \binom{n}{\gamma} \binom{n-\gamma}{k} (n-\gamma-1)(n-\gamma-2)\ldots(n-r-k+1)
\]

\[
= \frac{1}{k!} \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} (n-\gamma)(n-\gamma-1)\ldots(n-r-k+1)
\]

\[
= \frac{1}{k!} \sum_{\gamma=0}^{n} (-1)^{\gamma+k} \binom{n}{\gamma} \left[\gamma^k + \sum_{j=1}^{K} p_j \gamma^{k-j} \right]
\]

where \(p_1, p_2, \ldots, p_k \) depend on \(n \) and \(k \) and not on \(r \). So, by (2.4.1) we have

\[
I = \frac{(-1)^{n-k}}{k!} \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} \left[\gamma^k + \sum_{j=1}^{K} p_j \gamma^{k-j} \right]
\]

\[
= \frac{(-1)^{n-k}}{k!} \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} \gamma^k
\]

\[
= 0 \quad \text{if} \quad k = 0, 1, \ldots, n-1,
\]

\[
= 1 \quad \text{if} \quad k = n.
\]
Lemma 2.4.2. Let \(F: [a,b] \to X \) and \(G: [a,b] \to \mathbb{R} \) be two functions such that \(F_{(n)}(f) \), and \(G_{(n)}(f) \) exist. Then the function \(H = GF \) is such that \(H_{(n)}(f) \) exists and
\[
H_{(r)}(f) = \sum_{p=0}^{r} \binom{r}{p} F_{(p)}(f) G_{(r-p)}(f), \quad r = 0, 1, \ldots, n.
\]

Proof. We may suppose \(f = 0 \). Since \(F_{(n)}(0) \) and \(G_{(n)}(0) \) exist, we have
\[
F(h) = \sum_{r=0}^{n} \frac{h^r}{r!} F_{(r)}(0) + O(h^n)
\]
and
\[
G(h) = \sum_{r=0}^{n} \frac{h^r}{r!} G_{(r)}(0) + O(h^n)
\]
and hence
\[
H(h) = G(h) F(h)
\]
\[
= \sum_{r=0}^{n} \frac{h^r}{r!} \left[\sum_{p=0}^{r} \frac{1}{p!(r-p)!} F_{(p)}(0) G_{(r-p)}(0) \right] + O(h^n)
\]
\[
= \sum_{r=0}^{n} \frac{h^r}{r!} \left[\sum_{p=0}^{r} \binom{r}{p} F_{(p)}(0) G_{(r-p)}(0) \right] + O(h^n)
\]
and this proves the lemma.

Lemma 2.4.3. Let \(n \) be any positive integer and let \(F: [a,b] \to X \) be strongly \(A \subseteq n \mathcal{G} \) and \(G: [a,b] \to \mathbb{R} \) be such that \(G^{(n)} \) is bounded and \(G \) be \(A \subseteq n \mathcal{G} \) on \([a,b]\). Then \(GF \) is strongly \(A \subseteq n \mathcal{G} \) on \([a,b] \).
Proof. Since $F_{(n)}$ and $G^{(n)}$ exist, by Lemma 2.4.2 $(FG)_{(n)}$ exists. To prove the theorem, we first prove the following relation

$$
(2.4.3) \quad \Delta_n(FG; c, t) = F(t) \Delta_n(G; c, t) + \sum_{r=0}^{n} \left(\frac{n}{r} \right) G_{(r)}(c) \Delta_{n-r}(F; c, t)
$$

where

$$
\Delta_n(F; c, t) = F(t) - F(c).
$$

Applying Lemma 2.4.2 for $n=1$, we have

$$
\Delta_1(FG; c, t) = \frac{1}{t-c} \left[F(t)G(t) - F(c)G(c) - F_{(1)}(c)G(c)(t-c) - F(c)G_{(1)}(c)(t-c) \right]
$$

Thus $(2.4.3)$ is true for $n=1$. Suppose that it is true for $n-1$. Now for any function $\phi : [a, b] \to \mathbb{R}$ having n-th strong Peano derivative we have from the definition of Δ_n,

$$
(2.4.4) \quad \Delta_n(\phi; c, t) = \frac{n}{t-c} \Delta_{n-1}(\phi; c, t) - \phi'(c)
$$

where n is any positive integer. So applying $(2.4.4)$, Lemma 2.4.2 and $(2.4.3)$ for $n-1$ we get

$$
(2.4.5) \quad \Delta_n(FG; c, t) = \frac{n}{t-c} \Delta_{n-1}(FG; c, t) - (FG)_{(n)}(c)
$$

$$
= \frac{n}{t-c} \left[F(t) \Delta_{n-1}(G; c, t) + \sum_{r=1}^{n-1} \left(\frac{n-1}{r} \right) G_{(r)}(c) \Delta_{n-1-r}(F; c, t) \right]
$$

$$
- \frac{n}{t-c} \sum_{r=1}^{n-1} \left(\frac{n-1}{r} \right) G_{(r)}(c) \Delta_{n-1-r}(F; c, t)
$$

$$
= F(t) \Delta_{n-1}(G; c, t) + G(c) \Delta_{n-1}(F; c, t)
$$

$$
+ \frac{n}{t-c} \sum_{r=1}^{n-1} \left(\frac{n-1}{r} \right) G_{(r)}(c) \Delta_{n-1-r}(F; c, t)
$$

$$
- \sum_{r=1}^{n-1} \left(\frac{n}{r} \right) G_{(r)}(c) \Delta_{n-r}(F; c, t) + G_{(n)}(c) \Delta_n(F; c, t)
$$

where n is any positive integer.
Now using \((2.4.4)\)
\[
\frac{n}{t-c} \frac{(n-1)}{\gamma} \frac{G_{(r)}(c)}{E_{n-r}(F; e, t)} - (\frac{n}{\gamma}) G_{(r)}(c) F_{(n-r)}(c)
\]
\[
= (\frac{n}{\gamma}) G_{(r)}(c) \left[\frac{n-r}{t-c} E_{n-r}(F; e, t) - F_{(n-r)}(c) \right]
\]
\[
= (\frac{n}{\gamma}) G_{(r)}(c) E_{n-r}(F; e, t).
\]
Hence from \((2.4.5)\)
\[
E_n(F; G; e, t) = F(t) E_n(G; e, t) + \sum_{r=0}^{n} (\frac{n}{\gamma}) G_{(r)}(c) E_{n-r}(F; e, t)
\]
which shows that \((2.4.3)\) is true for \(n\). Thus by induction \((2.4.3)\) is true for all \(n\). Now, let
\[
\|F(t)\| = M
\]
\[
\|G_{(r)}(c)\| = M_r, \quad r = 0, 1, \ldots, n,
\]
Then using relation \((2.4.3)\) and the definition of \(\omega_n\) we get
\[
\omega_n(F; G; e, d) \leq M \omega_n(G; e, d) + \sum_{r=0}^{n} (\frac{n}{\gamma}) M_r \omega_{n-r}(F; e, d).
\]
Now since \(F\) and \(G\) are strongly \(A_{C_{n\gamma}}\), \([a, b] = \bigcup_{k=1}^{n} E_k\) such that \(F\) and \(G\) are \(A_{C_{n\gamma}}\) on each \(E_k\). By Lemma 2.2.4, \(F\) is strongly \(A_{C_{n-r\gamma}}\) on each \(E_k\) for \(r = 1, 2, \ldots, n\). Let \(\epsilon > 0\) be arbitrary and \(E_k\) be fixed. Then there are positive numbers \(\delta_0, \delta_1, \ldots, \delta_n\) and \(\eta > 0\) such that for every finite collection of non-overlapping intervals \([a_i, b_i]\) with end points in \(E_k\) we have
\[\sum_{i} \omega_n (G; a_i, b_i) \leq \varepsilon \text{ whenever } \sum_{i} (b_i - a_i) < \varepsilon \]

\[\sum_{i} \omega_n (F; a_i, b_i) \leq \varepsilon \text{ whenever } \sum_{i} (b_i - a_i) < \frac{\varepsilon}{r} \]

for \(r = 0, 1, \ldots, n \). Thus choosing \(\varepsilon = \min \left[\delta_0, \delta_1, \ldots, \delta_n, \eta \right] \)

we get from (2.4.6)

\[\sum_{i} \omega_n (FG; a_i, b_i) \leq \left[M + \sum_{r=0}^{n} \binom{n}{r} M_r \right] \varepsilon \]

whenever \(\sum_{i} (b_i - a_i) < \varepsilon \). Hence \(FG \) is strongly \(AC^n \) on each \(E_k \). Since \(FG \) is strongly continuous, this completes the proof of the lemma.

Theorem 2.4.4. Let \(n \) be any positive integer and let \(F : [a, b] \to X \) be strongly \(AC^n G^+ \) and \(G : [a, b] \to R \) be such that \(G^{(n)} \) is \(AC^n G^+ \). Then the function \(\Psi \) defined by

\[\Psi(\xi) = F(\xi) G(\xi) + \sum_{r=1}^{n} \binom{n}{r} \frac{1}{(r-1)!} \int_{a}^{\xi} (\xi - t)^{r-1} F(t) G^{(r)}(t) dt \]

is strongly \(AC^n G^+ \).

Proof. Since \(G^{(n)} \) is \(AC^n G^+ \), \(G^{(r)} \) is the \(n-r \) fold integral of \(G^{(n)} \). Hence by Lemma 2.2.3, \(G^{(r)} \) is \(AC^n G^+ \) for \(r = 0, 1, 2, \ldots, n \). Moreover, \(G^{(n)} \) is bounded and so \((G^{(r)})^{(n-r)} \) are bounded on \([a, b]\) for \(r = 0, 1, 2, \ldots, n \). Now since \(F \) is \(AC^n G^+ \), by Lemma 2.2.4 it is \(AC^n G^+ \) for \(r = 1, 2, \ldots, n \). Thus by Lemma 2.4.3, \(FG^{(r)} \) is \(AC^n G^+ \) for \(r = 0, 1, 2, \ldots, n \). Now, since \(FG^{(r)} \) is strongly continuous, it is Lebesgue-Bochner
integrable and hence integrating by parts successively it is seen that the integral
\[\int_a^f (t - \xi)^{-1} F(t) G^{(r)}(t) \, dt \]
is the \(r \)-fold integral of \(F G^{(r)} \), and hence by Lemma 2.2.3 it is strongly \(AC_n G_r \) for \(r = 1, 2, \ldots, n \). Thus every term of \(\psi \) is strongly \(AC_n G_r \) and so \(\psi \) is strongly \(AC_n G_r \) on \([a, b]\).

Lemma 2.4.5. Let \(n \) be any positive integer and let \(F: [a, b] \to \mathbb{X} \) and \(G: [a, b] \to \mathbb{R} \) be such that \(F^{(n)} \) exists in \([a, b]\) and \(G^{(n)} \) is continuous in \([a, b]\). Then the function
\[\psi: [a, b] \to \mathbb{X} \]
defined by
\[\psi(t) = F(t) G(t) + \sum_{r=1}^{n} (-1)^r \binom{n}{r} \int_a^f (t - \xi)^{r-1} F^{(r)}(t) G^{(r)}(t) \, dt \]
is such that
\[\psi^{(n)} = F^{(n)} G \quad \text{in} \quad [a, b] . \]
Moreover, if \(F^{(n+1)}(t_0) \) and \(G^{(n+1)}(t_0) \) exist then \(\psi^{(n+1)}(t_0) \) exists and
\[\psi^{(n+1)}(t_0) = F^{(n+1)}(t_0) G(t_0) + F^{(n)}(t_0) G^{(1)}(t_0) \]

Proof. By Lemma 2.4.2, for fixed \(r, 1 \leq r \leq n \) the function
\[H = F G^{(r)} \]
is such that \(H^{(n-r)} \) exists in \([a, b]\). Let \(t_0 \in [a, b] \)
Then
\[(2.4.7) \quad H(t) = \sum_{t=t_0}^{t} \binom{n-r}{i} \frac{(t-t_0)^i}{i!} H^{(i)}(t_0) + O((t-t_0)^{n-r}) \]
Now since \(H \) is continuous, integrating by parts successively
\[
(2.4.8) \quad \frac{1}{(\gamma-1)!} \int_{t_0}^{t} (\gamma-t)^{-1} H(t) \, dt = \int_{t_0}^{t} \frac{f \, dt}{t_0} \int_{t_0}^{t} \frac{f \, dt}{t_0} \cdots \int_{t_0}^{t} \frac{f \, dt}{t_0} \, \int_{t_0}^{t} H(t) \, dt
\]
and
\[
(2.4.9) \quad \int_{a}^{t_{0}} (\gamma-t)^{-1} H(t) \, dt = \int_{a}^{t_{0}} \left[(\gamma-t_{0}) + (t_{0}-t) \right]^{-1} H(t) \, dt
\]
\[
= \sum_{i=0}^{\gamma-1} (\gamma_{i}^{-1}) (\gamma-t_{0}) \int_{a}^{t_{0}} (t_{0}-t)^{-i} H(t) \, dt.
\]
From (2.4.7), (2.4.8) and (2.4.9)
\[
\frac{1}{(\gamma-1)!} \int_{a}^{t} (\gamma-t)^{-1} H(t) \, dt = \frac{1}{(\gamma-1)!} \sum_{i=0}^{\gamma-1} (\gamma_{i}^{-1}) (\gamma-t_{0}) \int_{a}^{t_{0}} (t_{0}-t)^{-i} H(t) \, dt
\]
\[
+ \sum_{i=0}^{\gamma-1} \frac{(\gamma-t_{0})}{(1+i)!} \int_{a}^{t_{0}} (t_{0}-t)^{-i} H(t) \, dt + O((\gamma-t_{0})^{\gamma}).
\]
Thus since \(t_{0} \) is arbitrary
\[
\left[\frac{1}{(\gamma-1)!} \int_{a}^{t} (\gamma-t)^{-1} H(t) \, dt \right]_{t_{0}} = H_{\gamma}(n-\gamma)
\]
everywhere in \([a,b]\). Therefore by Lemma 2.4.2 and (2.4.2)
\[
\Psi_{(n)}(\gamma) = \sum_{K=0}^{n} \binom{n}{K} F_{(K)}(\gamma) G^{(n-K)}(\gamma) + \sum_{r=1}^{n} (-1)^{r} \binom{n}{r} \sum_{K=0}^{n-r} F_{(K)}(\gamma) G^{(n-K)}(\gamma)
\]
\[
= \sum_{r=0}^{n} (-1)^{r} \binom{n}{r} \sum_{K=0}^{n-r} F_{(K)}(\gamma) G^{(n-K)}(\gamma)
\]
\[
= \sum_{K=0}^{n-\gamma} \left[\sum_{r=0}^{\gamma} (-1)^{r} \binom{n}{r} \binom{n-r}{K} \right] F_{(K)}(\gamma) G^{(n-K)}(\gamma)
\]
\[
= F_{(n)}(\gamma) G(\gamma).
\]
Also at a point \(t_0 \), where \(F^{(n+1)} \) and \(G^{(n+1)} \) exist, for fixed \(r \), \(1 \leq r \leq n \), the function \(H = F G^{(r)} \) is such that \(H^{(n-r+1)}(t_0) \) exists and so one gets as above

\[
\Psi^{(n+1)}(t_0) = \sum_{k=0}^{n+1} \binom{n+1}{k} F^{(k)}(t_0) G^{(n-k+1)}(t_0) + \sum_{\gamma=1}^{n} (-1)^{\gamma} \binom{n}{\gamma} \sum_{k=0}^{n-r+1} \binom{n-r+1}{k} F^{(k)}(t_0) G^{(n-k+1)}
\]

\[
= \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} \sum_{k=0}^{n-r+1} \binom{n-r+1}{k} F^{(k)}(t_0) G^{(n-k+1)}
\]

\[
= \sum_{k=1}^{n+1} \left[\sum_{\gamma=0}^{n-r+1} (-1)^{\gamma} \binom{n-r+1}{\gamma} \right] F^{(k)}(t_0) G^{(n-k+1)} + \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} F^{(n+1)}(t_0) G^{(n+1)}
\]

\[
= \sum_{k=1}^{n+1} \left[\sum_{\gamma=0}^{n-k+1} (-1)^{\gamma} \binom{n-k+1}{\gamma} \right] F^{(k)}(t_0) G^{(n-k+1)} + F^{(n+1)}(t_0) G^{(n+1)}
\]

Since

\[
\binom{n}{\gamma} = \binom{n+1}{\gamma} - \binom{n}{\gamma-1}
\]

we have

\[
\sum_{\gamma=0}^{n-k+1} (-1)^{\gamma} \binom{n}{\gamma} \binom{n-r+1}{k} = \binom{n+1}{k} + \sum_{\gamma=1}^{n-r+1} (-1)^{\gamma} \left[\binom{n+1}{\gamma} - \binom{n}{\gamma-1} \right] \binom{n-r+1}{k}
\]

\[
\sum_{\gamma=0}^{n-k+1} (-1)^{\gamma} \binom{n+1}{\gamma} \binom{n-r+1}{k} = \sum_{\gamma=0}^{n-k+1} (-1)^{\gamma} \binom{n+1}{\gamma} \binom{n-r+1}{k} + \sum_{\gamma=0}^{n} (-1)^{\gamma} \binom{n}{\gamma} \binom{n-r+1}{k}
\]

Hence by (2.4.2)

\[
\Psi^{(n+1)}(t_0) = F^{(n+1)}(t_0) G(t_0) + F^{(n)}(t_0) G^{(1)}(t_0)
\]
Theorem 2.4.6. Let \(f : [a, b] \to X \) be \(C_n D_B \) -integrable on \([a, b] \) and
\[
\phi(t) = (C_n D_B) \int_a^t f(x) \, dx
\]
Let \(G : [a, b] \to R \) be such that \(G^{(n)} \) is absolutely continuous on \([a, b] \). Then \(fG \) is \(C_n D_B \) -integrable on \([a, b] \) and
\[
(C_n D_B) \int_a^b fG = [\phi G]_a^b - (C_{n-1} D_B) \int_a^b \phi G^{(1)}.
\]

Proof. We prove the theorem for \(n = 1 \). Let \(F : [a, b] \to X \) be the function such that \(F_{(1)} = \phi \) and \(F_{(2)} = f \) almost everywhere and \(F \) is strongly \(AC \). By Theorem 2.3.5 the function \(\phi \) is \(C_0 D_B \) -integrable. Since \(G^{(1)} \) is absolutely continuous, \(\phi G^{(1)} \) is \(C_0 D_B \) -integrable in \([a, b] \) (cf. Theorem 1.4.3). By Theorem 2.4.4 and Lemma 2.4.5 there exists a function \(\psi : [a, b] \to X \) which is strongly \(AC \) and
\[
\psi_{(1)} = F_{(1)} G = \phi G \quad \text{everywhere and} \quad \psi_{(2)} = F_{(1)} G^{(1)} + G F_{(2)},
\]
almost everywhere, that is \(\psi_{(2)} = \phi G^{(1)} + G f \) almost everywhere. Hence \(\phi G^{(1)} + G f \) is \(C_1 D_B \) -integrable and
\[
\psi(b) - \psi(a) = \int_a^b [\phi(t) G^{(1)}(t) + G(t) f(t)] \, dt,
\]
i.e.
\[
\phi(b) G(b) - \phi(a) G(a) = \int_a^b [\phi(t) G^{(1)}(t) + G(t) f(t)] \, dt.
\]
Now since \(\phi G^{(1)} \) is \(C_0 D_B \) -integrable, by Theorem 2.3.4
\[
[\Phi G]_a^b = (c_{m-D_B})_a^b \Phi G^{(t)} + (c_{m-D_B})_a^b f G
\]

proving the theorem for \(m = 1 \).

Now we suppose that the theorem is true for \(m = m - 1 \) and prove it for \(m = m - 1 \). The proof will then follow by induction. As above, let \(F \) be the function such that \(F_{(m)} = \Phi \) and \(F_{(m+1)} = f \) almost everywhere and \(F \) be strongly \(A C_{m+1} \). Since \(\Phi \) is \(C_{m-D_B} \) -integrable and \((G^{(t)})^{(m-1)} = G^{(m)} \) is absolutely continuous, by induction hypothesis, \(\Phi G^{(t)} \) is \(C_{m-D_B} \) -integrable. Applying Theorem 2.4.4 and Lemma 2.4.5 there exists a function \(\Psi : [a,b] \to X \) which is \(A C_{m+1} \) and \(\Psi_{(m)} = F_{(m)} G = \Phi G \) everywhere and \(\Psi_{(m+1)} = F_{(m)} G^{(t)} + \int f(t) G G^{(t)} \) almost everywhere. So, \(\Phi G^{(t)} + f G \) is \(C_{m-D_B} \) -integrable and

\[
\Psi_{(m)}(b) - \Psi_{(m)}(a) = \int_a^b [\Phi(t) G^{(t)} + G(t) f(t)] dt.
\]

Now since \(\Phi G^{(t)} \) is \(C_{m-D_B} \) -integrable, by Theorem 2.3.4 it is \(C_{m-D_B} \) -integrable and hence

\[
(c_{m-D_B}) \int_a^b f G = [\Phi G]_a^b - (c_{m-D_B}) \int_a^b \Phi G^{(t)}
\]

proving the theorem for \(m = m \). This completes the proof.

6. Examples

Example 2.6.1. There exists a \(C_{m-D_B} \) -integrable function which is not Lebesgue-Bochner integrable.
Proof. Let f be an everywhere finite real valued function on $[0, 1]$ which is D_∞-integrable but not L-integrable. (For the existence of such a function see [19, p.187]). Hence there exists a function F which is ACG_∞ and $F^{(1)} = f$ almost everywhere in $[0, 1]$. Let $\{c_n\} \in l_2$ be fixed. Define $g: [0, 1] \to l_2$ by
\[
g(t) = \{c_n f(t)\}, \quad t \in [0, 1]
\]
and $G: [0, 1] \to l_2$ by
\[
G(t) = \{c_n F(t)\}, \quad t \in [0, 1]
\]
Then if $\sum c_n^2 = k^2$, for each $t \in [0, 1]$
\[
\|g(t)\| = |k| |f(t)|.
\]
Since f is not L-integrable, $\|g(t)\|$ is not L-integrable in $[0, 1]$ and hence by [15, p.80, Theorem 3.7.4], the function g is not Lebesgue-Bochner integrable on $[0, 1]$. Now
\[
\|G(t_1) - G(t_2)\| = \left[\sum (c_n F(t_1) - c_n F(t_2))^2 \right]^{1/2}
\]
\[
= |k| |F(t_1) - F(t_2)|
\]
So, G is strongly ACG_∞. Also if at $t = t_0$, $F^{(1)}(t_0) = f(t_0)$ then at $t = t_0$,
\[
\|G(t_0 + h) - G(t_0) - g(t_0)\| = \left[\sum c_n^2 \left(\frac{F(t_0 + h) - F(t_0)}{h} - f(t_0) \right)^2 \right]^{1/2}
\]
\[
= |k| \left| \frac{F(t_0 + h) - F(t_0)}{h} - f(t_0) \right| \to 0
\]
as $h \to 0$. Hence $G(t) = \emptyset$ almost everywhere in $[0, 1]$. Thus g is $C_0 D_\# B$ -integrable in $[0, 1]$ and

$$(c_0 D_\# B) \int_0^1 g(t) \, dt = G(t)$$

completing the proof.

Now, if $f : [a, b] \to \mathbb{X}$ is LB-integrable then the function $F : [a, b] \to \mathbb{X}$ defined by

$$F(\xi) = (LB) \int_a^\xi f(t) \, dt, \quad \xi \in [a, b]$$

is strongly absolutely continuous [15, p.83, Theorem 3.7.11] and $F(\xi) = f$ almost everywhere in $[a, b]$. Hence f is $C_0 D_\# B$ -integrable and

$$(c_0 D_\# B) \int_a^b f(t) \, dt = (LB) \int_a^b f(t) \, dt$$

Thus from the above example, the $C_0 D_\# B$ -integral is strictly more general than the LB-integral.

Example 2.6.2. For each $n > 0$ there exists a $C_n D_\# B$ integrable function which is not $C_{n-1} D_\# B$ -integrable.

Proof. Let f be a real valued finite function in $[0, 1]$ which is $C_n P$ -integrable but not $C_{n-1} P$ -integrable. (For the definition of $C_r P$ -integral see [9].) For the existence of such a function see [8]. In fact, in [8] a function is given which is CP-integrable but not $D_\#$-integrable.
The same method may be applied to construct a function which is \(C_n \) -integrable but not \(C_{n-1} \) -integrable. So, there is a real valued function \(\phi \) in \([0, 1]\) such that \(\phi \) is \(A \) \(C_n G_* \) and \(\phi_{(n+1)} = f \) almost everywhere in \([0,1]\) [21]. We may suppose \(\phi_{(n)}(0) = 0 \). Let \(C = \{ c_r \} \in \ell_1 \) be fixed such that \(\sum c_r^* = 1 \). Define the function \(g \) and \(\psi \) on \([0, 1]\) with values in \(\ell_1 \) such that

\[
 g(t) = c f(t), \quad t \in [0, 1]
\]

\[
 \psi(t) = c \phi(t), \quad t \in [0, 1].
\]

Then \(\psi_{(i)} = c \phi_{(i)} \), for \(i = 1, 2, \ldots, n+1 \) and

\[
 E_n(\psi; t_0, t) = c E_n(\phi; t_0, t). \quad \text{So,} \quad \psi \text{ is strongly } A C_n G_* \text{ and } \psi_{(n+1)} = g \text{ almost everywhere in } [0, 1]. \text{ Hence } g \text{ is}
\]

\[
 C_n D_\# B \text{ -integrable in } [0, 1] \text{ and }
\]

\[
 \psi_{(n)}(t) = (C_n D_\# B) \int_0^t g(t) \, dt.
\]

If possible, let \(g \) be \(C_{n-1} D_\# B \) -integrable. Then there is \(q : [0, 1] \rightarrow \ell_1 \) such that \(q \) is strongly \(A C_{n-1} G_* \) and \(q_{(n)} = g \) almost everywhere in \([0, 1]\). By Lemma 2.2.3, the function

\[
 G(t) = \int_0^t q(\xi) \, d\xi
\]

is strongly \(A C_n G_* \) and \(G_{(n+1)} = q_{(n)} \) at each point where \(q_{(n)} \) exists. Thus \(\psi_{(n+1)} = G_{(n+1)} \) almost everywhere. Hence by Lemma 2.2.6, \(\psi_{(n)} - G_{(n)} \) is a constant and hence \(\psi_{(n+1)} - q \) is a polynomial of degree at most \(n-1 \). Hence

\[
 E_{n-1}(q; t_0, t) = E_{n-1}(\psi_{(n)}; t_0, t) = c E_{n-1}(\phi_{(n)}; t_0, t).
\]
Therefore, since \(q \) is strongly \(A \mathcal{C}_{n-1} \mathcal{G}_+ \), \(\phi_{(t)} \) is \(A \mathcal{C}_{n-1} \mathcal{G}_+ \). Also if \(q_{(n)}(t_o) \) exists and equals \(q(t_o) \) then since \(\psi_{(t)} \) and \(q \) differ by a polynomial of degree at most \(n-1 \),

\[
\| \frac{n}{t-t_o} \mathcal{E}_{n-1}(q ; t_o, t) - q(t_o) \| = \| \frac{n}{t-t_o} \mathcal{E}_{n-1}(\psi_{(t)}; t_o, t) - q(t_o) \|
\]

\[
= \| \frac{n}{t-t_o} \mathcal{E}_{n-1}(\phi_{(t)}; t_o, t) - f(t_o) \|
\]

which tends to 0 as \(t \to t_o \), showing that \((\phi_{(t)})'_{(n)}(t_o) = f(t_o) \).

Hence \((\phi_{(t)})_{(n)} = f \) almost everywhere. Thus \(f \) is \(\mathcal{C}_{n-1} \mathcal{P} \) - integrable in \([0, 1]\) (cf. [21]), which is a contradiction.