In India where agriculture is the most predominant occupation of the rural population, the problem of regional disparities is one of the serious constraints of the socio-economic progress, and the State of Andhra Pradesh is no exception to this generalisation. Bewildering diversity is clearly evident in all such aspects as physiography, climate, soil, water, and other natural resource potentiality as well as human environment. This multi-faceted as obviously resulted in the disparity in the agricultural development. Hence, the reduction in regional imbalances of agricultural development has become the foremost objective of our agricultural planning for a long time. Even after more than 50 years of our Independence still there are many areas both in the country as well as in the State remain backward in agricultural development.
After the success of Green Revolution in Andhra Pradesh, the process of agricultural growth and development as it is created different types of disparities. viz., inter-regional, intra-regional, inter-dimensional. The only way of reducing as well as removing such disparity lies in devising ways and means for realizing a faster growth in respect of some dimensions and regions, only then it is possible to achieve the balance in terms of sectorial/dimensional as well as aggregate levels of growth and development of agriculture among the regions. To bring balanced regional agricultural development as well as to enhance the gross agricultural output and standard of living, it is imperative to identify, classify and describe the areas / agricultural holdings of dynamic, transitional and static / backward / weaker in terms of the development of different dimensions of agriculture. This exercise can provide a typology of different levels of agricultural development which helps the planners and policy makers to initiate as well as implement corrective measures for reduction of imbalances between the regions and between the agricultural holdings. Against this backdrop, the present study is intended to provide a vivid picture about the different dimensions of agriculture, the levels of agricultural development and the resultant regional disparities in Andhra Pradesh.
Irrigation Development

Irrigation acts as a catalytic agent for adoption of high yielding variety technology and renders agricultural systems, more superior, stable, diversified and high productive. The regional differences in irrigation development are not uncommon in Andhra Pradesh due to diversity in terrain, climatic, edaphic and hydrological conditions.

Andhra Pradesh ranks second among the States in the country about the area under canal irrigation. Within the State canal irrigation is the second important source of irrigation which accounts for 38 per cent of the gross irrigated area of the State. In the development of canal irrigation, the deltaic districts namely, East Godavari, West Godavari, Krishna and Guntur have been benefited very much through major irrigation projects like Nagarjunasagar, Prakasam barrage and Godavari barrage. The second important canal irrigation belt benefited from the major irrigation projects is northern and eastern Telangana consists of Nizamabad, Karimnagar, Adilabad, Khammam and Nalgonda districts. The third and the least important canal irrigated zone is found in northern Rayalaseema region. It shows that the district of north Coastal Andhra, southern Rayalaseema and south-western Telangana regions are very poor in getting the advantage of irrigation development through major irrigation projects.
These are the areas which badly seen with perennial irrigation development for stable agriculture.

Well irrigation is the most predominant type of irrigation in the State accounting for 44 per cent of the total irrigated area of the State. It is found that well irrigation is the major source of irrigation in many parts of drought prone areas as well as non-canal irrigated areas of Rayalaseema and Telangana regions. In these areas, the development of well irrigation is more effective, as a supplement and more protective rather than a substitute for the development of small scale intensive agriculture.

Tank irrigation is the third important source of irrigation accounting for 17.0 per cent in the gross irrigated area of the State. The proportion of tank irrigation is found high in the districts of north Coastal Andhra, southern Coastal Andhra, northern Telangana and southern Rayalaseema regions. The Deccan Plateau portion of Andhra Pradesh is often described as the 'land of tanks'. In the recent times due to sheer negligence of the maintenance of irrigation tanks and tank catchment areas from the government side as well as from the farming community side, the intensity and the spread of tank irrigation is in declining trend which is very unfortunate trend indeed. Now it is high time and great need for the development of tank irrigation in the non-perennial water resource areas especially the
plateau region of the State. It is possible through restoration and renovation of all the existing tanks by doing proper lining and bunding besides the maintenance of field channels in the catchment areas. As a result, it is possible to avail the available runoff for optimum use of surface water resources for the purpose of ground water storage as well as to enhance the tank irrigation potential in the State.

In 1996-97, the gross irrigated area from all the sources accounted for 43.1 per cent of the gross cropped area of the State. Wherever the development of canal irrigation is made there overall intensity of irrigation is high. As a result, the development of irrigation by and large has been confined to deltas and major river basins. There are many districts in Telangana and Rayalaseema region which have been suffering from the scarcity of agricultural water which in turn geo-paradizing the agricultural prosperity of the State.

Dynamics of Land Use

Land is a basic natural resource and its use is always central to all discussions of agricultural development and ecological management. The spatial distribution of land use pattern in Andhra Pradesh has revealed that land under agriculture (about 40%) forms the major land use category of primary economic significance. The arable land use concentration is found overwhelmingly high in the
coastal plains and river basins than in the districts of plateau region. Stable arable land use pattern with high intensity in cropping is the chief characteristic feature of many of the coastal districts due to the development of assured irrigation. While in many of the drought prone districts of Rayalaseema and Telangana regions, the arable land use pattern is highly fluctuating with low intensity of cropping.

The second important land use type both intensity and spread is forest cover (23%), but its concentration is mostly confined to well defined belts of Eastern Ghats region (Rayalaseema and South Coastal Andhra) and very high rainfall areas of northern Telangana and north Coastal Andhra regions. As per the National Forest Policy the present forest cover in the State falls too short to maintain the proper ecological balance. Hence, it is necessary to go for afforestation on war-foot lines.

Fallow land cover (about 14%) is the most typical land use of dry farming areas of Telangana and Rayalaseema regions. In these areas, the low and precarious rainfall conditions, poor edaphic conditions, low irrigation facilities and poor socio-economic conditions of the farmers are really the detrimental factors for effective and optimum utilisation of fallow land cover. Dry farming technology and soil and water management, agro-forestry, and sylvi-vegetative system are the possible solutions to be initiated and geared up for the
improvement of the fallow land cover potentiality for productive purpose.

The land put to non-agricultural use (9%) is an another important land use type from the point of non-agricultural activities development like settlement, industry, transport and communication and recreation etc. Many of the coastal districts are found with significant spatial spread of non-agricultural land due to high density of settlements, water bodies, industrial establishments and communication system etc. In contrast, many of the districts of Rayalaseema and Telangana found with low proportion of non-agricultural land which speaks the low process of the development of non-agricultural economic activities.

Dynamics and Diversification of Crop Regionalization:

A study of the crop regions and crop combinations in spatio-temporal perspective is useful in regional agricultural planning especially to optimise both ecological and economic crop farming. From this study, it is found that the cropping pattern is getting specialised in the Coastal Andhra and also in Rayalaseema regions. Paddy and pulses cultivation made the farming more specialised in the deltaic districts and canal irrigated areas. The increasing commercial value and suitability of groundnut cultivation in association with paddy and pulses made the crop farming more specialised in drought prone
Rayalaseema region. The spectacular gain of groundnut cultivation in Rayalaseema has replaced the millet crops from the crop combination leading to more specialisation. With the development of irrigation facilities in Telangana, the crop farming is tending more diversified both with foodgrains and commercial crops. The development of new irrigated areas in Telangana region brought out a significant change in the association and relative rank of crops in the combinations. Here paddy, maize, cotton, sugarcane and oil seeds have tended to reduce and even replace millet crops.

In the process of crop transformation and competition existed between foodgrain crops and the commercial crops (i) some of the inferior crops like millets have lost their importance and gradually getting eliminated from the cropping pattern and (ii) the high remunerative and commercial value crops like paddy, oil seeds, sugarcane, pulses, cotton and maize have consolidated their spatial spread. A dynamic feature of the crop combinations in the State has been the shift from subsistence foodgrain oriented crops to commercial oriented crops like oil seeds, cotton, sugarcane and fruit farming. As the process of change in cropping pattern is progressed a greater degree of uniformity, stability and sustainability are brought about in the crop-based agricultural economy of the State.
Crop Yield Levels:

The following conclusions are made from the analysis of the changing patterns of area, yield, and production of 21 crops cultivating in the State.

(i) Among the foodgrain crops paddy, maize, blackgram, redgram, greengram and bengalgram have gained significant spatial spread either due to their intensive cultivation, higher per hectare returns or more market value and suitability as rotation crops. In contrast to this, all the millet crops and inferior gram crops have been losing their areal ground and identity in the cropping pattern of the State. Some of the inferior millets have been gradually eliminating from the cropping pattern in the process crop transformation. The reasons for the dwindling trend of these crops may perhaps due to declining preference as chief foodgrains in the diet of the people of Andhra Pradesh and also heavy competition arised from more remunerative and agri-suitable oil seeds and other commercial crops.

(ii) Among the commercial crops, groundnut, cotton, chillies and sugarcane have achieved better performances and extended their spatial extent very significantly. The
increasing commercial value of these crops, feasibility of market, high per hectare monetary returns and mostly the suitability of these crops to both irrigated and unirrigated areas and low rainfall zones have effectively and combinedly prompted the farmers to go for commercial nature of farming.

(iii) All the crops except sugarcane have registered an increase in the per hectare yield levels but in varied proportions.

(iv) All the irrigated and intensive cultivated crops like paddy, sugarcane, tobacco, cotton, blackgram, ragi, maize, bengalgram and groundnut crops are found with higher yield patterns than the other millet and gram crops.

(v) An impressive progress and growth per hectare yield levels are brought in some of the important crops like paddy, cotton, maize, tobacco, chillies, jowar and bengalgram.

(vi) The strategy of ‘Green Revolution’ has led to the emergence of paddy cultivation put it in a unrivalled place in the practices and performances of agriculture in
the State. The new seed-fertilizer-technology has also brought some significant positive changes in the performance of cotton, groundnut, maize, chillies, tobacco and sugarcane crops. In contrast, the remaining rainfed crops were also witnessed with some positive progress in their per hectare yield levels, but, these crops are heavily suffering from striking fluctuations and disturbances in their yield patterns.

(vii) The changing trend of the per hectare yield level of irrigated crops is found as dynamic, healthy, stable and developed in nature while the changing trend of per hectare yield of rainfed crops is though positive and dynamic but not healthy, stable and developed.

(viii) Out of the three regions, the Coastal Andhra is found with high yield patterns, annual growth rates and healthy dynamic trends with little fluctuations in many of the crops. In contrast to this, the Telangana region is found with low per hectare yield levels of many crops but with high growth rates and positive trends. In this region, a significant progress has been made in the improvement of per hectare yields from very poor level to moderate and high yield levels. But, the dynamic trends
of the per hectare yields of many crops in Telangana region are suffering from fluctuations which reveals the unhealthy and instability in agricultural development. Though the Rayalaseema region is also found with low to moderate yield levels but also suffering greatly with yearly fluctuations.

(ix) In general, the inter-district and inter-regional disparities in the spatial distribution of the per hectare yields of many crops are high but however in declining trend. The inter-district variations in yield levels are less significant in the case of irrigated crops, while the variations are profound in the rainfed crops.

The Levels of Agricultural Productivity

The aggregate agricultural productivity of the State is measured on the basis of money-value coefficients for which the production and the wholesale prices of 24 crops are taken for the analysis. In 1994-97, the average agricultural productivity in the State is Rs.9447/hectare. Among the regions, the highest productivity is found in Coastal Andhra (Rs.11335/hectare) followed by Rayalaseema (Rs.9188/hectare) and Telangana (Rs.7849/hectare).
Between 1971-74 and 1994-97, the increase in the per hectare agricultural productivity is high in Telangana region with a net increase of Rs.5062/- hectare followed by Coastal Andhra Rs.4672/- hectare and Rayalaseema with an increase of Rs.4349/- hectare. In the case of Coastal Andhra, the high productivity has been improved to further higher level of productivity with the advances of modernisation of agriculture. In contrast to this, Telangana region which was found with very poor productivity level in 1971-74 has made significant improvements for the increase of productivity level which is largely due to recent developments made in irrigation through major and medium irrigation projects. When compared with the growth of agricultural productivity of Coastal Andhra and Telangana regions; Rayalaseema region has not been made any radical changes in improving the agricultural productivity due to frequent occurrences of drought and low development of canal irrigation.

At district level, significant changes are brought in the levels of agricultural productivity during the period 1971-74 – 1994-97. It is evident from the facts that the number of districts with low and very low productivity levels were reduced from 18 districts in 1971-74 to 10 districts in 1994-97. In contrast to this, the number of districts with high and very high productivity levels were increased from one district in 1971-74 to 8 districts in 1994-97. The districts with moderate
agricultural productivity were increased from one district in 1971-74 to 5 districts in 1994-97. Obviously, the modernisation of agriculture has brought out radical changes in the increase of agricultural productivity levels in all over the State, but particularly in the districts of Coastal Andhra and other irrigated districts of northern Telangana and eastern Rayalaseema (Chittoor) regions. In Telangana region, the districts located in the Godavari valley namely, Nizamabad, Karimnagar, Warangal and Khammam have made considerable progress in achieving moderate productivity levels due to conjunctive utilisation of both surface and sub-surface water resources for the development of irrigation.

Paradoxically, still there are many districts in Telangana and Rayalaseema regions suffering with low productivity levels. In these districts, the several decades' efforts after the Independence have not been made any permanent measures or solutions to overcome the drought impacts on agricultural productivity. Resultantly, the disparities in the levels of agricultural productivity have been further accentuated and created (i) a healthy and an impressive progress trend in the irrigated areas and while (ii) an unhealthy, disturbed and unstabilised trend of snail progress in the drought prone districts of the State.
The Levels of Agricultural Development

After careful consideration, 25 variables relating landuse, irrigation, technological inputs, labour inputs, demographic inputs, cropping pattern, production system, energy inputs and climate were selected at district level for the measurement of agricultural development at two points of time namely, 1973-74 and 1993-94. These variables which found highly inter related and very often overlapping and mutually determining have been subject to a Factor Analysis to extract the significant dimensions of agriculture development.

In 1973-74, the Factor matrix suggests four important factors on the basis of the direction and magnitude of factor scores variance explained and eigen values. These four factor dimensions explained the total variance of 78.4 per cent and represent four dimensions of agricultural development reflecting different levels of development.

Factor-I is treated as one dimension of agricultural development based on irrigated agriculture and foodgrain farming. Factor-II is treated as education and know-how cultivators. Factor-III takes high positive factor loadings of commercial and food crops. Factor-IV typifies as human and animal labour inputs to agriculture. These four dimensions of agriculture are not much exclusive, although each pattern is predominant in one or the other regions of the State. These
four factors together explained the disparities in the overall development of agriculture in 1973-74. As per the composite index, 3 districts (Krishna, East Godavari and Hyderabad) come under the category of highly developed agriculture; 9 districts (Srikakulam, Visakhapatnam, West Godavari, Guntur, Nellore, Nizamabad, Medak, Warangal and Karimnagar) come under the category of developed agriculture; 4 districts (Prakasam, Cuddapah, Nalgonda, Khammam) come under backward category and the rest of 5 districts (Anantapur, Kurnool, Chittoor, Mahabubnagar, Adilabad) come under very backward category of agriculture. From these hierarchical agricultural development it is noticed that many of the backward and very backward districts are the drought prone areas with scanty irrigation development.

In 1993-94, the Factor analysis extracted 3 important factors on the basis of the direction and magnitude of factor loadings. These 3 factors represent the typology of agricultural development. The Factor-I is named as cultivators and agricultural productivity, Factor-II is named as technological inputs to agriculture; and Factor-III is treated as commercial and foodcrops. All these three factors put together have exploited 72.4 per cent of variance on the data on different measures of agricultural development. These three factors together explained the disparities in overall agricultural development at district level. As per the composite index, two districts (Hyderabad, West Godavari) are
identified as highly developed category in agriculture; 9 districts (Srikakulam, East Godavari, Krishna, Guntur, Nellore, Nizamabad, Nalgonda, Warangal, Karimnagar) as developed category; 9 districts (Vizianagaram, Visakhapatnam, Prakasam, Cuddapah, Chittoor, Medak, Mahabubnagar, Khammam and Adilabad) identified as backward category and 2 districts (Anantapur and Kurnool) are identified as agriculturally very backward. It is very perplexing to state that, even after more than Eight Five Year Plans many of the drought prone districts still have been suffering with agricultural backwardness. By and large, the districts which were identified as backward and very backward in agriculture during 1973-74 have been still remained with agricultural backwardness in 1993-94 also. Whatever the small developments made in irrigation sector in these districts could not overcome the risk of drought impacts. The frequent occurrences of drought and crop failures have had a debilitating and devastating effect on agricultural development of these districts.

In conclusion, the developed and highly developed agriculture is noticed in the districts with better irrigation facilities. It indicates that the development of irrigation is a cornerstone for the development of prosperous agriculture. Effective use of irrigation system is equally important. In fact it forms the basis for development and modernization of agriculture. It is very clear that the State of Andhra Pradesh cannot be categorised as a homogenous unit to characterised
agricultural development especially the Coastal Andhra region which is better than the other two regions of the State. Within the Coastal Andhra the deltaic districts namely East Godavari, West Godavari, Krishna, and Guntur (Godavari-Krishna delta system) and Nellore (Pennar delta) are identified as agriculturally well developed. The remaining north Coastal districts namely, Srikakulam, Vizianagaram and Visakhapatnam as well as Prakasam in the south-coastal region are found under backward category.

In Telangana region, the recent development of canal irrigation as well as well irrigation in Nizamabad, Karimnagar, Warangal made the farming more progressive and sustainably developed. The remaining Telangana districts and all the Rayalaseema districts are still reeling under staggered agricultural growth and unhealthy agricultural environment. Hence, it is obvious that the agriculture development in Andhra Pradesh confined to a few areas and the regional disparities are widening in different directions in different dimensions of agricultural development. The planning strategy for agricultural development must be difference for different areas of the State.

Structural Characteristics of Agriculture at Micro-Scale

Micro-level investigation about the organisation of agriculture is of paramount importance for understanding the individual farm
structures, functional system and controls of agriculture and also to examine the differences in the levels of development from one agricultural holding to another agricultural holding.

In the present study, 440 sample agricultural holdings are chosen from all over the State covering 25 villages in 13 districts. The primary data pertaining to important characteristics of agriculture have collected from sample respondents with the help of questionnaire and interview method.

From the sample analysis it is found that the degree of development of irrigation, intensity of agriculture and mechanization of farming are very significant in the farmers of forward community and large size of land holdings particularly located in the Coastal Andhra region. In contrast, the scanty development of irrigation, predominant rainfed farming with low intensity of cropping with animal power based farm operations are found significant in the farmers of scheduled castes and scheduled tribes, backward communities and small size of land holdings located mostly in the Rayalaseema and Telangana regions. Statistically, it is also proved that the development of irrigation, intensity of cropping and mode of cultivation are dependent of social status of the farmers, size of land holding and geographical location of the regions. Hence, it is confirmed that there is a clear disparity in the development of irrigation,
intensification and mechanization of farming at agricultural holding level.

About the use of manures to the farm, majority of the sample holdings have been depending upon both cow dung and chemical fertilisers. Use of purely the traditional manure i.e., cow dung is negligible but found in small farmers who belong to scheduled castes/scheduled tribes. About the quantum of application of fertilisers and pesticides per acre, 47.5 per cent of sample households have been applying very low quantity among the social groups. This low quantity of fertilisers use is relatively high in the farmers of scheduled caste and scheduled tribes. Among the regions, the consumption of fertilisers and pesticides is high in the sample agricultural holdings of Coastal Andhra region while very low in Rayalaseema. In the frequency of the application of pesticides, the glaring differences are there between the farmers of forward community and the farmers of scheduled castes/scheduled tribes. Among the regions the maximum frequency of application of pesticides per acre is found high in Coastal Andhra while it is very low in Rayalaseema region which clearly exposes the disparity in the frequency of application of pesticides between the social groups and the regions.

About 87 per cent of sample agricultural holding are practicing either partially or completely the high yielding variety seed
cultivation. However it is found that the scheduled caste/scheduled tribe farming community particularly belongs to small size of land holdings is still cultivating their lands with traditional seeds because traditional seeds are less costly and risk prone under dry farming. It is also observed that the Coastal Andhra region is far excellence in the high yielding variety cultivation than the other regions of the State. About the timely application of fertilisers and pesticides, majority of the sample agricultural holdings (more than 95%) responded very positively.

The scientific practice of crop-rotation is found in little more than half of the sample households in the State without any distinction between the social groups. But among the regions, the practice of crop rotation is very high in Telangana and Rayalaseema regions, while it is deplorably poor in Coastal Andhra region. About 79 per cent of the respondents do not practice inter-crop cultivation in the State. Among the regions the practice of inter-crop cultivation is negligible in Coastal Andhra region. The partial development of mixed farming is found in 60 per cent of the total respondents in the State. It shows that the diversification of agricultural economy is in the process of transformation.

About commercial crop farming majority of the sample agricultural holdings (>95%) are in favour of commercial/semi-
commercial cultivation which is a good sign indeed towards commercialization of agriculture. High proportion of commercial farming is found in the farmers of forward community who belong to medium and large size of land holdings. Among the regions Telangana is found slightly higher proportion of commercial cropping than the other two regions. With regard to crop productivity, majority of the sample holdings (50%) are found with low and very low levels of crop productivity. Among the social groups the low crop productivity is found in the farmers of weaker sections. Among the regions low crop productivity levels are very significant in Rayalaseema region. Statistically it is confirmed that there is a marked disparity in crop productivity levels between the three regions of the State.

With regard to capital input, it is paradoxical to state that 50 per cent of the farmers of scheduled caste/scheduled tribes and small size of land holdings do not depending upon government loans. In the field survey, it is found that the small farmers could not get the government loans because they have tiny size of land which is not permissible to get the loan. Hence these small farmers lend money from private sources. In this situation it is pertinent to state that the Government should come forward for the benefit of small farmers by relaxing the rules and regulations in the grant of liberal loans from the Government source. About 55 per cent of the sample holdings expressed that they get the loans in right time. Among the social
groups majority of the forward community households get the loan in right time while it is reverse in the case of scheduled caste/scheduled tribe farmers. About the problems of the agriculture, it is observed that the frequent striking fluctuations in the price value of the crops and lack of good market facility are identified as major problems being confronted by the majority of the farm households in the State. These two problems have been exposed well by the farmers of Coastal Andhra region because the agriculture in this region is by and large commercial oriented. Next in order, farm machinery and reliability of pesticides and insecticides, high cost of fertilisers and pesticides and non-availability of good seeds are identified as important problems. These problems in a larger extent being faced by the farmers of scheduled caste/scheduled tribes particularly in Rayalaseema and Telangana regions.

Conclusion

In conclusion, it may be noted that inter-regional and intra-regional disparities in the levels of agricultural development are significant in the agricultural state of Andhra Pradesh. Though there is an impressive progress in the development of irrigation, intensity of cropping, stabilization of cropping pattern, enhancement of per hectare yield levels and aggregate agricultural productivity, but not achieved uniformity in the development of all the regions, all the crops
and all the peasant communities as well as size of land holdings. The strategy of 'Green Revolution' and 'Modernization of Agriculture' have led to the emergence of few agricultural growth centres like assured canal irrigated areas of major river basins and deltaic shields into healthy, dynamic and highly developed areas in terms of agricultural development. In contrast, the drought prone districts, particularly in Rayalaseema and Telangana regions, have been suffering with agricultural backwardness. Whatever the development made in the drought prone areas, it could not overcome the impact of frequent occurrences of drought. As a result, an unhealthy, delicate, disturbed and vulnerable nature of agricultural development still prevailing in this dry farming areas. Hence, stable and sustainable agricultural development is the present need of the hour and the great demanding task of drought-prone districts. To bring stability and sustainability in agricultural economy of the dry farmers, some of the radical changes are to be brought. They are: (i) the expansion of irrigation by conjunctive utilisation of both surface and subsurface water resource, (ii) wide-spread development of soil conservation methods, (iii) popularization of watershed management, (iv) wide-spread diffusion and development of dry farming technology, (v) optimisation of cropping pattern, (vi) development of eco-farming, (vii) practice of crop rotations, inter-cropping systems and multiple cropping systems, (viii) development of mixed farming and diversification of agricultural
For all the differences in the levels of development of agriculture either between the regions, intra-regions, size of land holdings or between the farmers of different social groups at micro-scale, irrigation is the most deterministic factor. In all the earlier Five Year Plans the development of irrigation is made only in the major river basins. Now the present utmost concern is to tap the runoff of all the minor river basins especially located in the drought-prone areas with less cost. The development of medium and minor irrigation projects, application of watershed and water harvesting concepts at micro-level and the renovation and restoration of the prominence of tank irrigation all will pave the way for effective and optimum water resource management in the scantly irrigated areas. In the operation of this endeavour, both institutional help and ever-lasting positive peasant outlook are prerequisite.

At micro-level, the development in different dimensions of agriculture is at low ebb in the farmers of weaker sections, small size of land holdings especially belong to the farmers of scheduled caste and scheduled tribes. The costly technological inputs of hybrid farming made the development very stable and stronger in the
farmers of forward community and large size of land holdings. In such a situation, the agricultural plans must be evolved from the micro-level touching more upon weaker farming communities particularly located in the weaker areas. The distribution of funds, incentives and subsidies as well as the formulation of plans, programmes and policies should not be based on general criteria and it must be specific typology, dimensions and the levels of agricultural development of different regions, and different agricultural holdings in the State. Then only it is possible to reduce the imbalances in agricultural development at different levels in Andhra Pradesh. If all the drought-prone areas and weaker farming communities and small and marginal farmers are assisted by all possible technologies and policies, balanced regional agricultural development is not far beyond our reach.