ACKNOWLEDGEMENTS

I express my deep sense of gratitude to my Research Supervisor Dr. S. Jyothi, Associate Professor and Head of the Department of Computer Science, Sri Padmavathi Mahila Visvavidyalayam (Women’s University), Tirupati for her prolific guidance and constant encouragement at every stage of this research work and for all the support she extended to me in the pursuit of completing my thesis work successfully.

I sincerely thank to Prof. K. Sandhya Rani, Dr. M. Usha Rani and Dr. K. Usha Rani for their encouragement and sustained interest shown in my research work.

I am also thankful to UGC, New Delhi, for giving financial assistance through non-SAP Fellowship during the year 2009-2010.

I am very much beholden to my family members for their continuous support and encouragement to my career development.

It is my pleasure to acknowledge the help of all the individuals either directly or indirectly who facilitated me in the completion of my research work.

Place : Tirupati

Date : (K.VANISREE)
CONTENTS

- List of Tables
- List of Figures
- Abstract

1. Introduction
1.1 Motivation and Objectives
1.2 An Overview of Decision Support System Process
1.3 Organization of Thesis

2. Problem Domain, Methodology & Review of Literature
2.1 Congenital Heart Septum Defects
 2.1.1 Normal Heart Structure and Functionality
 2.1.2 Congenital Heart Defects
 2.1.3 Congenital Heart Septum Defects
2.2 Artificial Neural Networks
 2.2.1 History
 2.2.2 Biological and Artificial Neurons
 2.2.3 Neural Network Architecture
 2.2.4 Activation Functions
 2.2.5 Learning Laws
 2.2.6 Supervised and Unsupervised Training
 2.2.7 Backpropagation Neural Network
 2.2.8 Training and Testing of Neural Networks
2.3 Review of Literature

3. Decision Support System for Congenital Heart Septum Defect Diagnosis based on Signs and Symptoms using Neural Networks
3.1 Introduction
3.2 Materials and Methods
3.3 Experiments and Results
3.4 Conclusion

4. Decision Support System for Congenital Heart Septum Defect Diagnosis based on ECG Signal Features using Neural Networks

4.1 Introduction
4.2 The Electrocardiogram
 4.2.1 Introduction
 4.2.2 Heart Waves and Durations
4.3 The Wavelet Transformation
 4.3.1 Introduction
 4.3.2 The Continuous Wavelet Transformation
 4.3.3 The Discrete Wavelet Transformation
4.4 Automatic Extraction of ECG Signal Features using Discrete Wavelet Transformation
 4.4.1 Introduction
 4.4.2 Materials and Methods
 4.4.3 Extraction of ECG Signal Features
 4.4.3.1 ECG Preprocessing
 4.4.3.2 Extraction of ECG Signal Features
4.5 Decision Support System for Congenital Heart Septum Defect Diagnosis based on ECG Signal Features using Neural Networks
 4.5.1 Introduction
 4.5.2 Materials and Methods
 4.5.3 Experiments and Results
4.6 Conclusion
5. Decision Support System for Congenital Heart Septum Defect Diagnosis based on Chest X-ray Features using Neural Networks

5.1 Introduction

5.2 The Chest Radiography

5.3 Digital Image Processing Techniques

5.3.1 Introduction

5.3.2 Spatial Filtering

5.3.3 Edge Detection and Linking

5.4 Automatic Extraction of Chest X-ray Features using Digital Image Processing Techniques

5.4.1 Introduction

5.4.2 Materials and Methods

5.4.3 Extraction of Chest X-ray Features

5.4.3.1 Preprocessing

5.4.3.2 Extraction of Chest X-ray Features

5.4.4 Experiments and Results

5.5 Decision Support System for Congenital Heart Septum Defect Diagnosis based on Chest X-ray Features using Neural Networks

5.5.1 Introduction

5.5.2 Materials and Methods

5.5.3 Experiments and Results

5.6 Conclusion

6. Decision Support System for Congenital Heart Septum Defect Diagnosis based on Echocardiography Features using Neural Networks

6.1 Introduction
6.2 The Echocardiography 149

6.3 Automatic Extraction of Echocardiography Features using Digital Image Processing Techniques 152

6.3.1 Introduction 152

6.3.2 Materials and Methods 152

6.3.3 Extraction of Echocardiography Features 153

6.3.3.1 Preprocessing 153

6.3.3.2 Extraction of Echocardiography Features 154

6.4 Decision Support System for Congenital Heart Septum Defect Diagnosis based on Echocardiography Features using Neural Networks 155

6.4.1 Introduction 155

6.4.2 Materials and Methods 156

6.4.3 Experiments and Results 158

6.5 Conclusion 161

7. Decision Support System for Congenital Heart Septum Defect Diagnosis using Neural Networks 162

7.1 Introduction 162

7.2 Materials and Methods 163

7.3 Experiments and Results 166

7.4 Conclusion 169

8. Conclusions and Future Directions 170

8.1 Conclusions 170

8.2 Future Work 172

References 173

Appendix-A 182

Appendix-B 183
LIST OF TABLES

Table 3.1: Attribute Names, Description and their Allowed Values of DSS for CHSD Diagnosis based on Signs and Symptoms 67
Table 3.2: Confusion Matrix of DSS for CHSD Diagnosis based on Signs and Symptoms classification 73
Table 4.1: Parameter Names, Description and their allowed Values of DSS for CHSD Diagnosis based on ECG features 107
Table 4.2: Confusion Matrix of DSS for CHSD Diagnosis based on ECG features classification 114
Table 5.1: Baseline Measurements of Heart Size for age group of 21-80 years 136
Table 5.2: Chest X-ray Features and their values extracted by the developed algorithm 139
Table 5.3: Parameter Names, Description and their Allowed Values of DSS for CHSD Diagnosis based on Chest X-ray features 141
Table 5.4: Confusion Matrix of DSS for CHSD Diagnosis based on Chest X-ray features classification 147
Table 6.1: Parameter Names, Description and their Allowed Values of DSS for CHSD Diagnosis based on Echocardiography features 156
Table 7.1: Parameter Names, Descriptions and allowed Values of DSS for CHSD Diagnosis based on the resultant values of physical and clinical tests 164
Table 7.2: Confusion Matrix of DSS for CHSD based on physical and clinical evaluations classification 169
LIST OF FIGURES

Figure 1.1: Architecture of a Decision Support System 9
Figure 1.2: Overview of DSS for CHSD Diagnosis 11
Figure 2.1: A Healthy Heart Cross-Section 18
Figure 2.2: Percentage of Occurrences of CHD 23
Figure 2.3: An Image of ASD 25
Figure 2.4: An Image of VSD 25
Figure 2.5: (a) Biological Neuron (b) Artificial Neuron (c) Computational Neuron 34
Figure 2.6: (a) Single Layer Neural Networks (b) Multilayer Neural Networks 38
Figure 2.7: The various types of Activation Functions 40
Figure 2.8: Various Learning Laws 44
Figure 2.9: (a) Supervised Training (b) Unsupervised Training 46
Figure 2.10: Backpropagation Neural Network with one hidden layer 47
Figure 2.11: Backpropagation training algorithm 48
Figure 2.12: Illustration of generalization 53
Figure 3.1: Architecture of DSS for CHSD Diagnosis based on Signs and Symptoms 69
Figure 3.2: The Error Performance of a training network of DSS for CHSD Diagnosis based on Signs and Symptoms 72
Figure 3.3: The Diagnosis result of an abnormal person using developed DSS for CHSD Diagnosis based on Signs and Symptoms 72
Figure 3.4: The Diagnosis result of a normal person using developed DSS for CHSD Diagnosis based on Signs and Symptoms

Figure 3.5: A chart showing the accuracy of the DSS for CHSD Diagnosis based on Signs and Symptoms classification

Figure 4.1: Normal ECG waves and corresponding intervals

Figure 4.2: Three-level Wavelet Decomposition Tree

Figure 4.3: Three-level Wavelet Reconstruction Tree

Figure 4.4: Wavelet Families (a) Haar (b) Daubachies4 (c) Coiflet1 (d) Symlet2 (e) Mayer

Figure 4.5: The original ECG signal of Record No 103 of MIT-BIH Arrhythmia

Figure 4.6: Reconstructed Approximation and Detail Components of the ECG signal

Figure 4.7: The De-trended ECG Signal

Figure 4.8: De-noised ECG Signal

Figure 4.9: R-waves of the ECG Signal

Figure 4.10: The Power of R-waves of the ECG Signal

Figure 4.11: Thresholded R-waves of the ECG Signal

Figure 4.12: The Q and S-waves of the ECG Signal

Figure 4.13: The P and T waves of ECG Signal

Figure 4.14: Architecture of DSS for CHSD Diagnosis based on ECG signal features

Figure 4.15: The Error Performance of a training network of DSS for CHSD Diagnosis based on ECG Signal features
Figure 4.16: Viewing the Original ECG signal of Record No 103 of MIT-BIH Arrhythmia using developed DSS

Figure 4.17: The diagnosis result of an abnormal person using developed DSS for CHSD based ECG signal features

Figure 4.18: A chart representing the Classification accuracy of the DSS for CHSD Diagnosis based on ECG Signal features

Figure 5.1: Chest X-ray Image of Normal Heart
Figure 5.2: Chest X-ray Image of Abnormal Heart
Figure 5.3: The contour of the Chest X-ray along with the heart size
Figure 5.4: Pixels of image section under mask
Figure 5.5: Mask Coefficients showing coordinates
Figure 5.6: Robert’s masks
Figure 5.7: Sobel’s masks
Figure 5.8: Prewitt’s masks
Figure 5.9: LoG’s masks
Figure 5.10: The Original Chest X-ray Image
Figure 5.11: The Image after Noise Removal
Figure 5.12: Canny Edge for a Filtered Image
Figure 5.13: An Image representing the Heart Contour extracted by using the Developed Algorithm
Figure 5.14: An Image after applying the extracted Heart Contour to filtered image
Figure 5.15: An Image representing the Heart Size Measurements by using developed algorithm
Figure 5.16: Architecture of DSS for CHSD Diagnosis based on Chest X-ray features

Figure 5.17: The Error Performance of a training network of DSS For CHSD Diagnosis based on Chest x-ray features

Figure 5.18: Diagnosis result for original Chest X-ray image using developed DSS for CHSD Diagnosis based chest x-ray features

Figure 5.19: A chart representing the classification accuracy of the DSS for CHSD Diagnosis based on Chest X-ray features

Figure 6.1: Echocardiogram image of a normal heart

Figure 6.2: Echocardiogram image of abnormal heart

Figure 6.3: The Echocardiogram image after preprocessing

Figure 6.4: The processed image used for feature extraction

Figure 6.5: Architecture of DSS for CHSD Diagnosis based on Echocardiography features

Figure 6.6: Diagnosis result for original Echo image using developed DSS for CHSD Diagnosis based on Echocardiography features

Figure 7.1: Architecture of DSS for CHSD Diagnosis

Figure 7.2: The Error Performance of a training network of DSS for CHSD Diagnosis based on physical and clinical features

Figure 7.3: Result obtained through the DSS for CHSD diagnosis

Figure 7.4: A chart representing classification accuracy of the DSS for CHSD Diagnosis based on physical and clinical evaluations
ABSTRACT

The main objective of the thesis is to develop a Decision Support System for Congenital Heart Septum Defect Diagnosis using Artificial Neural Network Techniques. The proposed system increases the accuracy of the diagnosis and decreases the diagnosis time.

Design and implementation of Intelligent Systems has become a crucial factor for the innovation and development of better products for society. Artificial Neural Networks (ANNs) have been widely advocated as tools for developing Artificial Systems. The major tasks of Artificial Neural Networks are Function Approximation, Classification, Clustering, Decision Support Systems, etc.,

Decision Support System (DSS) has been identified as one of the important solution providers in the emerging field of Artificial Neural Networks. Decision Support Systems are gaining an increased popularity in various domains including business, engineering, military and medicine.

Medical or Clinical Decision Support System (MDSS or CDSS) is an interactive Decision Support System Software, which is designed to assist physicians and other health professionals in decision making tasks and helps to determine diagnosis of patient disease. The Medical or Clinical Decision
Support System reduces the diagnosis time and improves the accuracy of diagnosis.

In this thesis, a Decision Support System is proposed to diagnose Congenital Heart Septum Defect (CHSD) using Artificial Neural Networks. The most commonly used Backpropagation Neural Network model of ANN is implemented in the present study. As the diagnosis process of Congenital Heart Septum Defect includes both Physical (Signs & Symptoms) and Clinical Evaluation (ECG, Chest X-ray and Echocardiography) of a patient, the proposed system develops individual Decision Support Systems for both Physical and Clinical Evaluation of the diagnosis.

To perform Physical Evaluation of Congenital Heart Septum Defect, a Decision Support System using Neural Networks based on Signs and Symptoms is proposed.

Since the Clinical Evaluation of Congenital Heart Septum Defect is based on the Image Analysis, feature extraction algorithms are developed to analyze and extract the features from the images automatically.

To extract the ECG features automatically, an algorithm is developed using Discrete Wavelet Transformations. The Daubaches Wavelet Transformation of level 10 is used for both noise removal and Peak Detections.
To extract the Chest X-ray features automatically, an algorithm is developed using Digital Image Processing Techniques such as median filter for noise removal, threshold based segmentation to extract the contour of heart field and so on.

In order to extract the features automatically from Echocardiography, an algorithm is developed using Digital Image Processing Techniques. Here, also a median filter is used for noise removal, gray level based threshold is applied to extract the required field and some other techniques are used for efficient extraction of data.

In the present study, individual Decision Support Systems using Neural Networks are proposed for Clinical Evaluation to automatically diagnose Congenital Heart Septum Defect based on the extracted clinical features respectively for Congenital Heart Septum Defect diagnosis based on ECG features, for Congenital Heart Septum Defect diagnosis based on Chest X-ray features, for Congenital Heart Septum Defect diagnosis based on Echocardiography features.

Finally by considering the resultant values of all the DSSs, a Neural Network is constructed for the diagnosis of CHSD. In addition to the diagnosis, the proposed system also stores and retrieves the resultant values.
The user friendly Decision Support Systems are designed and implemented in MATLAB 7.3 with GUI features.