1.1. Using approximate derivative and mean continuous ACG function Ellis introduced the mean continuous integral, GM_1-integral \[19\], which is based on the descriptive definition of the general Denjoy integral. Replacing the mean continuity in the definition of GM_1-integral, by the approximate mean continuity-called D_1-continuity—we introduce, in this chapter, an integral which is called D_1-integral. This integral which is an approximate extension of GM_1-integral, is shown to possess various properties of Denjoy integrals including integration by parts and the Cauchy and the Harnack properties.
I.2. Preliminaries

Definition 1.2.1: A function $f : E \to \mathbb{R}$, where \mathbb{R} is the set of reals and $E \subseteq \mathbb{R}$, is said to be generalized absolutely continuous on E if E can be expressed as countable union of closed sets on each of which f is absolutely continuous and is written $f \in \text{ACG}(E)$.

Note that this definition of ACG differs from that in [41, p.223] in that we are not using continuity of f. Since a continuous function f is absolutely continuous on the closure of a set on which f is absolutely continuous it follows that if f is ACG in the sense of [41, p.223] then f is also ACG in our sense. The converse is not true.

It is clear that if $f \in \text{ACG}(E)$ then f is VBG on E in the sense of [41, p.221] and is measurable and so by [41, Theorem 4.3, p.222] the approximate derivative f'_ap exists almost everywhere on E. It can be verified that if $f, g \in \text{ACG}(E)$ then $\alpha f + \beta g \in \text{ACG}(E)$ and $fg \in \text{ACG}(E)$, where α and β are constants.

Lemma 1.2.1: If $F \in \text{ACG}(E)$ then every closed subset of E contains a portion on which F is absolutely continuous.

Proof: Let $E = \bigcup_{k} E_k$ where each E_k is closed and F is absolutely continuous on E_k. Let Q be any closed subset of E. By Baire's theorem there is a portion P of Q which is contained in some E_k and hence F is absolutely continuous on P.

Lemma 1.2.2: If $F \in \text{ACG}(E)$ then F fulfils the Lusin condition (N) on E.

Proof: The proof given in [41, p. 225, Theorem 6.1] will suffice.

Theorem 1.2.1: Let \(F \in ACG([a, b]) \) and let \(F \) have Darboux property in \([a, b]\). If

\[
(2.1) \quad \limsup_{h \to 0} \frac{F(x+h) - F(x)}{h} \geq 0
\]

for almost all \(x \in [a, b] \) then \(F \) is continuous and nondecreasing in \([a, b]\).

Proof: Let \(G \) be the set of all points \(x \) in \([a, b]\) such that there is a neighbourhood of \(x \) in which \(F \) is nondecreasing (for the endpoints \(a \) and \(b \) we consider one sided neighbourhoods). Then \(G \) is open. Let \(H = [a, b] \setminus G \). Then \(H \) is closed. If possible let \(H \) be nonvoid. If \((c, d)\) is a contiguous interval of \(H \) then \(F \) is nondecreasing in \((c, d)\) and so by the Darboux property \(F \) is continuous and nondecreasing in \([c, d]\). Hence \(H \) cannot have isolated points. So \(H \) is perfect. By Lemma 1.2.1, there is a portion \((p, q)\) of \(H \) on which \(F \) is absolutely continuous. Let \(p < \alpha < \beta < q \) and \((\alpha, \beta) \cap H \neq \emptyset\). Then \(F \) is absolutely continuous in \([\alpha, \beta] \setminus H\). Since \(F \) is continuous and nondecreasing in the closure of the complementary intervals of \([\alpha, \beta] \cap H\), \(F \) is continuous and of bounded variation in \([\alpha, \beta]\). Since by Lemma 1.2.2, \(F \) fulfils the Lusin condition (N), \(F \) is absolutely continuous on \([\alpha, \beta]\). The condition \((2.1)\) almost everywhere then ensures that \(F \) is nondecreasing in \([\alpha, \beta]\). But this is a contradiction, since \((\alpha, \beta) \cap H \neq \emptyset\). Thus \(H \) is void. Hence \(F \) is nondecreasing in \([a, b]\).
Corollary 1.2.1: If \(F \) has Darboux property on \([a, b]\) and \(F \in ACG([a, b]) \) and \(F'_{ap} = 0 \) almost everywhere in \([a, b]\), then \(F \) is constant.

1.3. The \(D_1 \)-integral

Definition 1.3.1: Let \(f \) be a real valued function defined on \([a, b]\) and let \(c \in [a, b] \). Let \(f \) be \(D \)-integrable in some neighbourhood of \(c \). If there is a finite real number \(L \) and a measurable set \(E_c \subseteq [a, b] \) having \(c \) as a point of density (onesided point of density if \(c = a \) or \(c = b \)) such that for \(\varepsilon > 0 \) there is \(S = S(\varepsilon) > 0 \) such that

\[
\left| \frac{1}{x-c} \int_c^x f(t) \, dt - L \right| < \varepsilon \quad \text{whenever} \quad x \in E_c \quad \text{and} \quad 0 < |x-c| < S,
\]

then \(L \) is said to be \(D_1 \)-limit of \(f \) at \(c \) and we write

\[
D_1 \lim_{t \to c} f(t) = L.
\]

The function \(f \) is said to be \(D_1 \)-continuous at \(c \) if

\[
D_1 \lim_{t \to c} f(t) = f(c).
\]

In otherwords, \(f \) is \(D_1 \)-continuous at \(c \in [a, b] \) if \(f \) is \(D \)-integrable in some neighbourhood of \(c \) and \(f(c) \) is the approximate derivative at \(c \) of its indefinite \(D \)-integral; \(f \) is said to be \(D_1 \)-continuous on \([a, b]\) if it is \(D_1 \)-continuous at every point of \([a, b]\). (If \(x = a \) or \(x = b \) then appropriate onesided neighbourhood and onesided limit are to be considered in the above definition).
Clearly if \(f \) is continuous in \([a,b]\) then \(f \) is the derivative of its indefinite integral and so \(f \) is \(D_1 \)-continuous in \([a,b]\). The converse is not true. In fact, there exists a function \(f \) and there is a set \(E_0 \) of positive measure in its domain such that \(f \) is \(D_1 \)-continuous at each point on \(E_0 \) but nowhere continuous on \(E_0 \). Let \(F \) be an ACG function on an interval which is not differentiable at the points of a set \(E \) of positive measure (cf. [41, p.224]). The approximate derivative \(F'_{ap} \) exists almost everywhere (cf. [41, p.222, Theorem 4.3]). Let \(f = F'_{ap} \) where \(F'_{ap} \) exists and \(f = 0 \) otherwise. Clearly \(f \) is \(D_1 \)-continuous almost everywhere on \(E \) but \(f \) is not continuous on \(E \).

It may be recalled that a function \(f \) is said to be \(C_1 \)-continuous at \(x \) if \(f \) is \(D^* \)-integrable in some neighbourhood of \(x \) and if \(F'(x) = f(x) \) where \(F \) is an indefinite \(D^* \)-integral of \(f \) (see [6]). Replacing \(D^* \)-integral by \(D \)-integral, Ellis [19] introduced the concept of \(M_1 \)-continuity. Clearly \(C_1 \)-continuity implies \(M_1 \)-continuity and \(M_1 \)-continuity implies \(D_1 \)-continuity.

Definition 1.3.2: A function \(f : [a,b] \to \mathbb{R} \) is said to be \(D_1 \)-integrable on \([a,b]\) if there is a \(D_1 \)-continuous, ACG function \(\Phi : [a,b] \to \mathbb{R} \) such that \(\phi'_{ap} = f \) almost everywhere in \([a,b]\).

Then the function \(\Phi \) is said to be an indefinite \(D_1 \)-integral of \(f \) and \(\Phi(b) - \Phi(a) \) is the definite integral of \(f \) on \([a,b]\).

Since a \(D_1 \)-continuous function is an approximate derivative, it has Darboux property [21] and so by the Corollary 1.2.1, \(\Phi \) is unique up to an additive constant and so the definite integral is unique. The definite integral is denoted by

\[
(D_1) \int_a^b f(t) dt \quad \text{or simply } (D_1) \int_a^b f .
\]
Recall that a function \(f : [a,b] \rightarrow \mathbb{R} \) is \(GM_1 \)-integrable on \([a,b]\) if there is an \(M_1 \)-continuous, ACG function \(\Phi : [a,b] \rightarrow \mathbb{R} \) such that \(\Phi^\prime = f \) almost everywhere in \([a,b]\). Since \(M_1 \)-continuity implies \(D_1 \)-continuity, it follows that if \(f \) is \(GM_1 \)-integrable then it is \(D_1 \)-integrable and the integrals are equal. In Example 1.6.1, we shall show that the \(D_1 \)-integral is strictly more general than the \(GM_1 \)-integral [19]. Since the \(GM_1 \)-integral includes the CP-integral [6] the \(D_1 \)-integral is more general than the CP-integra and hence more general than the \(D_- \) and \(D^* \)-integrals. In Examples 1.6.2, 1.6.3 and 1.6.4 we shall show that the \(D_1 \)-integral and the AP-integral [5] (and also the AD-integral [23]) are not comparable and even not compatible. It may be noted that the AP-integral and the AD-integral have the disadvantages that the indefinite integrals (which are expected to have properties nicer than the integrand) may not be integrable (cf. [11] and Example 1.6.3 below).

The function \(f \) is said to be \(D_1 \)-integrable on a measurable subset \(E \) of \([a,b]\) if \(f_E \) is \(D_1 \)-integrable on \([a,b]\) where \(f_E \) is defined by

\[
f_E(x) = f(x), \quad x \in E
= 0, \quad x \notin E
\]

and we write \(f \in D_1(E) \). We shall take

\[
(D_1) \int_E f = (D_1) \int_a^b f_E.
\]

Theorem 1.3.1: If \(f \) is \(D_1 \)-integrable in \([a,b]\), then \(\int_a^x f \) is \(D \)-integrable and \(D_1 \)-continuous on \([a,b]\).
Theorem 1.3.2: If \(f \) and \(g \) are \(D_1 \)-integrable in \([a, b]\) and \(\alpha, \beta \) are constants then \(\alpha f + \beta g \) is \(D_1 \)-integrable in \([a, b]\) and

\[
(D_1) \int_a^b (\alpha f + \beta g) = \alpha (D_1) \int_a^b f + \beta (D_1) \int_a^b g.
\]

The proofs of Theorems 1.3.1 and 1.3.2 follow from the definition of the \(D_1 \)-integral.

Theorem 1.3.3: If \(f \) is \(D_1 \)-integrable in \([a, b]\) and in \([b, c]\) then it is \(D_1 \)-integrable in \([a, c]\) and conversely if \(f \) is \(D_1 \)-integrable in \([a, c]\) and \(a < b < c \) then it is so in \([a, b]\) and \([b, c]\).

In either case

\[
(D_1) \int_a^c f = (D_1) \int_a^b f + (D_1) \int_b^c f. \tag{3.1}
\]

Proof: Let \(F_1 \) and \(F_2 \) be the indefinite \(D_1 \)-integrals of \(f \) in \([a, b]\) and in \([b, c]\) respectively. We may suppose that \(F_2(b) = 0 \). Let

\[
F(x) = \begin{cases} F_1(x) & \text{for } x \in [a, b] \\ F_1(b) + F_2(x) & \text{for } x \in [b, c]. \end{cases}
\]
Then F is ACG in $[a,c]$ and $F'_{ap} = f$ almost everywhere in $[a,c]$. So we are to show that F is D_1-continuous in $[a,c]$. Since F_1 and F_2 are D_1-continuous in $[a,b]$ and in $[b, c]$ respectively, we are only to consider the point $x = b$. Since F_1 and F_2 are D-integrable in $[a,b]$ and $[b, c]$ respectively, F is D-integrable in $[a,c]$. Let Φ be an indefinite D-integral of F. Since F_1 is D_1-continuous at b,

$$\lim_{h \to 0^+} \frac{\Phi(b - h) - \Phi(b)}{-h} = \lim_{h \to 0^+} \frac{1}{h(D)} \int_{b-h}^{b} F(t) \, dt$$

$$= \lim_{h \to 0^+} \frac{1}{h(D)} \int_{b-h}^{b} F_1(t) \, dt = F_1(b).$$

Also since F_2 is D_1-continuous at b,

$$\lim_{h \to 0^+} \frac{\Phi(b + h) - \Phi(b)}{h} = \lim_{h \to 0^+} \frac{1}{h(D)} \int_{b}^{b+h} F(t) \, dt$$

$$= \lim_{h \to 0^+} \frac{1}{h(D)} \int_{b}^{b+h} [F_1(b) + F_2(t)] \, dt$$

$$= F_1(b) + F_2(b) = F_1(b).$$

Hence F is D_1-continuous at b. Thus F is an indefinite D_1-integral of f. Since $F(b) - F(a) + F(c) - F(b) = F(c) - F(a)$, the relation (3.1) is clear. The converse is easy.
Theorem 1.3.4: If \(f \) is \(D_1 \)-integrable and \(f \geq 0 \) almost everywhere in \([a,b]\), then \(f \) is Lebesgue integrable in \([a,b]\) and the integrals are equal.

Proof: Let

\[
F(x) = (D_1) \int_a^x f.
\]

Then \(F \) is \(D_1 \)-continuous and hence is an approximate derivative. So \(F \) has Darboux property \([21]\). Also \(F \) is in \(ACG([a,b]) \) and \(F' = f \geq 0 \) almost everywhere in \([a,b]\). Hence by Theorem 1.2.1, \(F' \) is nondecreasing in \([a,b]\). So \(F' \) exists almost everywhere and is Lebesgue integrable in \([a,b]\). Since \(F' = f \) almost everywhere in \([a,b]\), \(f \) is Lebesgue integrable in \([a,b]\). The rest is clear.

Theorem 1.3.5: If both \(f \) and \(g \) are \(D_1 \)-integrable on \([a,b]\) and if \(f \geq g \) almost everywhere then

\[
(D_1) \int_a^b f \geq (D_1) \int_a^b g.
\]
Proof: Let F and G be indefinite integrals of f and g respectively. Then F and G both are D_1-continuous and ACG on $[a,b]$ and $F'_\text{ap} = f$, $G'_\text{ap} = g$ almost everywhere on $[a,b]$. Hence $F'_\text{ap} \geq G'_\text{ap}$ almost everywhere on $[a,b]$. If $\phi = F - G$, then ϕ is D_1-continuous and ACG on $[a,b]$ and $\phi'_\text{ap} \geq 0$ almost everywhere on $[a,b]$ and hence by Theorem 1.2.1, we have

$$\phi(b) - \phi(a) \geq 0.$$

So

$$(D_1) \int_a^b f \geq (D_1) \int_a^b g.$$

Theorem 1.3.6: If f is D_1-integrable then f is measurable and finite almost everywhere.

Proof: Let F be an indefinite D_1-integral of f in $[a,b]$. Then, since F is ACG in $[a,b]$, $[a,b] = \bigcup \nolimits\limits_{n=1}^{\infty} E_n$, E_n closed and F is absolutely continuous on each E_n. For each n, let $F_n = F$ on E_n and F_n is linear in the closure of each contiguous interval. Then F_n is of bounded variation in $[a,b]$. Since $f = F'_\text{ap} = F'_n$ almost everywhere on E_n and since the derivative of a function of bounded variation is finite almost everywhere and measurable, the result follows.
Theorem 1.3.7 (Dominated convergence theorem): If (i) for each n, \(g \leq f_n \leq h \) almost everywhere in \([a,b]\) where \(g, f_n, h \) are \(D_1 \)-integrable and

\[
(ii) \lim_{n \to \infty} f_n(x) = f(x) \text{ almost everywhere on } [a,b] \text{ then } f \text{ is } D_1 \text{-integrable and}
\]

\[
\lim_{n \to \infty} (D_1) \int_{a}^{b} f_n = (D_1) \int_{a}^{b} f.
\]

Proof: Write \(\phi_n = f_n - g, \phi = f - g, \psi = h - g \). Then \(\phi_n \) and \(\psi \) are non-negative almost everywhere and \(D_1 \)-integrable in \([a,b]\). By Theorem 1.3.4 they are Lebesgue integrable in \([a,b]\). Since \(0 \leq \phi_n \leq \psi \), the Lebesgue theory of limits under the integral sign shows that \(\phi \) is Lebesgue integrable and

\[
\lim_{n \to \infty} (L) \int_{a}^{b} \phi_n = (L) \int_{a}^{b} \phi.
\]

That is

\[
\lim_{n \to \infty} [(D_1) \int_{a}^{b} f_n - (D_1) \int_{a}^{b} g] = (D_1) \int_{a}^{b} f - (D_1) \int_{a}^{b} g.
\]

Hence the result.

Theorem 1.3.8 (Monotone convergence theorem): If \(\{f_n\} \) is a non-decreasing sequence of \(D_1 \)-integrable functions on \([a,b]\) and if the sequence \(\{ (D_1) \int_{a}^{b} f_n \} \) is bounded above then the function

\[
f(x) = \lim_{n \to \infty} f_n(x) \text{ is } D_1 \text{-integrable on } [a,b] \text{ and}
\]

\[
(3.2) \quad \lim_{n \to \infty} (D_1) \int_{a}^{b} f_n = (D_1) \int_{a}^{b} f.
\]
Proof: Since \(f_n - f_1 \) is \(D_1 \)-integrable and nonnegative, by Theorem 1.3.4 it is Lebesgue integrable. Since \(f_n - f_1 \to f - f_1 \), by the Lebesgue theory

\[
\lim_{n \to \infty} (\int_a^b (f_n - f_1)) = (\int_a^b (f - f_1)) \tag{3.3}
\]

Since the sequence of integrals \(\left\{ (\int_a^b f_n) \right\} \) is bounded above, the sequence \(\left\{ (\int_a^b (f_n - f_1)) \right\} \) is also bounded above and therefore

\[
0 \leq (\int_a^b (f - f_1)) < \infty
\]

Hence \(f - f_1 \) is Lebesgue integrable and a fortiori, is \(D_1 \)-integrable and \(f_1 \) being \(D_1 \)-integrable, \(f \) is also so. Hence (3.2) follows from (3.3).

Theorem 1.3.9: If \(f \) is \(D_1 \)-integrable on \([a, b]\) then for every closed set \(E \subset [a, b] \) there is a closed interval \(J \subset [a, b] \) containing points of \(E \) in its interior such that

(1) \(f \) is Lebesgue integrable on \(J \cap E \)

(2) if \(\left\{ I_k \right\} \) is the sequence of contiguous closed intervals of \(J \cap E \) then

\[
\sum_{k} |(D_1)_{I_k} f| < \infty
\]
Proof: Let \(F(x) = (D_1) \int_a^x f \).

Then since \(F \) is ACG on \([a,b]\) by Lemma 1.2.1 there is a closed interval \(J \subset [a,b] \) containing points of \(E \) in its interior such that \(F \) is absolutely continuous on \(J \cap E \). Let \(G \) be the function on \(J \) which coincides with \(F \) on \(J \cap E \) and is linear on each contiguous closed intervals of \(J \cap E \). Then \(G \) is continuous and of bounded variation on \(J \) and \(F \) satisfies Lusin condition on \(J \). So \(G \) is absolutely continuous on \(J \) and hence \(G' \) is Lebesgue integrable on \(J \). Since \(G' = F_{ap} = f \) almost everywhere on \(J \cap E \), \(f \) is Lebesgue integrable on \(J \cap E \), proving (i).

To prove (ii), note that since \(F \) is absolutely continuous on \(J \cap E \), \(F \) is also of bounded variation on \(J \cap E \) and hence

\[
\sum_k \left| (D_1) \int_{I_k} f \right| = \sum_k \left| F(b_k) - F(a_k) \right| < \infty
\]

where \(I_k = [a_k, b_k] \). This proves (ii).

1.4. Integration by Parts

Lemma 1.4.1: Let \(\Phi \) be \(D_1 \)-continuous at \(x_0 \in [a,b] \) and \(F \) be an indefinite \(L \)-integral of a function \(f \) of bounded variation in \([a,b] \), then \(\Phi F \) is \(D_1 \)-continuous at \(x_0 \).

Proof: Let \(a < x_0 < b \). Since \(\Phi \) is \(D_1 \)-continuous at \(x_0 \), it is \(D \)-integrable in some neighbourhood of \(x_0 \). Let \(\Phi_1 = (D) \int_{x_0}^x \Phi \). Then \(\Phi_1 \)
is continuous in that neighbourhood of \(x_0 \). Hence for \(\varepsilon > 0 \) there is \(\delta > 0 \) such that

\[
(4.1) \quad |\Phi_1(t)| < \varepsilon \quad \text{whenever} \quad |t - x_0| < \delta.
\]

Since \(f \) is bounded in \([a, b]\), there is \(M > 0 \) such that

\[
(4.2) \quad |f(t)| \leq M, \quad \text{for all} \quad t \in [a, b].
\]

Since \(\Phi \) is D-integrable in a neighbourhood of \(x_0 \) and \(F \) is absolutely continuous in \([a, b]\), by \([41, \text{p.}246, \text{Theorem} \ 2.5]\),

\(\Phi F \) is D-integrable in that neighbourhood of \(x_0 \) and

\[
(D)\int_{x_0}^{x_0+h} \Phi F = \Phi_1(x_0 + h) F(x_0 + h) - (S)\int_{x_0}^{x_0+h} \Phi_1 dF.
\]

Let

\[
H(x) = (D)\int_{x_0}^{x} \Phi F.
\]

Let \(f = g_1 - g_2 \) where \(g_1 \) and \(g_2 \) are nonnegative nondecreasing functions and let \(F = F_1 - F_2 \) where \(F_1 \) and \(F_2 \) are indefinite integrals of \(g_1 \) and \(g_2 \) respectively.

Then, if \(0 < |h| < \delta \)

\[
(4.3) \quad \left[\frac{H(x_0 + h) - H(x_0)}{h} - F(x_0) \Phi(x_0) \right] = \left[\frac{1}{h} (D)\int_{x_0}^{x_0+h} \Phi F - F(x_0) \Phi(x_0) \right]
\]
\[
\begin{align*}
= \left[\frac{1}{h} F(x_0 + h) \tilde{\phi}_1(x_0 + h) - \frac{1}{h} \int_{x_0}^{x_0 + h} \tilde{\phi}_1 dF - F(x_0) \tilde{\phi}(x_0) \right].
\end{align*}
\]

If \(S(x) = (S) \int_{x_0}^{x} \tilde{\phi}_1 dF \), then since \(F \) is continuous and non-decreasing, \(S(x) \) is continuous. Also by [41, p.244, Theorem 2.1(ii)], \(S'(x) = \tilde{\phi}_1(x) g_1(x) \) except enumerable set and hence by [41, p.235, Theorem 10.5], \(S \) is ACG*.

Since \(\tilde{\phi}_1 g_1 \) is Riemann integrable

\[
\begin{align*}
(S) \int_{x_0}^{x} \tilde{\phi}_1 dF &= S(x) = (R) \int_{x_0}^{x} \tilde{\phi}_1 g_1.
\end{align*}
\]

Considering similarly for \(g_2 \) and taking the difference, we have

\[
(S) \int_{x_0}^{x} \tilde{\phi}_1 dF = (R) \int_{x_0}^{x} \tilde{\phi}_1 f.
\]

Hence from (4.3), (4.1) and (4.2)

\[
\begin{align*}
\left| \frac{H(x_0 + h) - H(x_0)}{h} - F(x_0) \tilde{\phi}(x_0) \right| &= \left| \frac{1}{h} F(x_0 + h) \tilde{\phi}_1(x_0 + h) - F(x_0) \tilde{\phi}(x_0) - \frac{1}{h} \int_{x_0}^{x_0 + h} \tilde{\phi}_1 f \right| \\
&\leq \left| \frac{1}{h} F(x_0 + h) \tilde{\phi}_1(x_0 + h) - F(x_0 + h) \tilde{\phi}(x_0) \right| \\
&\quad + \left| F(x_0 + h) \tilde{\phi}(x_0) - F(x_0) \tilde{\phi}(x_0) \right| + \frac{1}{h} \int_{x_0}^{x_0 + h} |\tilde{\phi}_1| |f| \\
&\leq \left| F(x_0 + h) \right| \left| \frac{\tilde{\phi}_1(x_0 + h)}{h} - \tilde{\phi}(x_0) \right| + |\tilde{\phi}(x_0)| \left| F(x_0 + h) - F(x_0) \right| \\
&\quad + \frac{M}{h} \cdot \varepsilon \cdot h.
\end{align*}
\]
Therefore, since \(\xi \) is arbitrary,
\[
\lim_{h \to 0^+} \left[\frac{H(x_0 + h) - H(x_0)}{h} - \frac{F(x_0)}{h} \right] = 0.
\]

Similarly if \(a < x_0 < b \) then
\[
\lim_{h \to 0^+} \left[\frac{H(x_0) - H(x_0 - h)}{h} - \frac{F(x_0)}{h} \right] = 0.
\]

Hence the result.

Lemma 1.4.2: Let \(\varphi \) be \(D_1 \)-integrable and \(f \) be of bounded variation in \([a, b] \). Let
\[
\hat{\varphi}(x) = (D_1) \int_a^x \varphi, \quad F(x) = (R) \int_a^x f, \quad a \leq x \leq b.
\]
Then the function \(\psi \) defined by
\[
\psi(x) = F(x) \hat{\varphi}(x) - (D) \int_a^x \hat{\varphi} f, \quad a \leq x \leq b,
\]
is \(D_1 \)-continuous, ACG on \([a, b] \).

Proof: By Theorem 1.3.1, \(\hat{\varphi} \) is \(D \)-integrable and so by [41, p. 246, Theorem 2.5], \(\hat{\varphi} f \) is \(D \)-integrable and so \(\psi \) is well defined. Since \(\hat{\varphi} \) is \(D_1 \)-continuous, by Lemma 1.4.1, \(F \hat{\varphi} \) is \(D_1 \)-continuous. Also since \(\hat{\varphi} \) is ACG and \(F \) is absolutely continuous, \(F \hat{\varphi} \) is ACG in \([a, b] \). Since a continuous function is \(D_1 \)-continuous, \((D) \int_a^x \hat{\varphi} f \) is \(D_1 \)-continuous and ACG. So \(\psi \) is \(D_1 \)-continuous and ACG in \([a, b] \).

Theorem 1.4.1 (Integration by parts): If \(\varphi \) is \(D_1 \)-integrable and \(f \) is of bounded variation in \([a, b] \) and if \(\hat{\varphi}(x) = (D_1) \int_a^x \varphi \), \(F(x) = (R) \int_a^x f, \ a \leq x \leq b \) then \(\varphi F \) is \(D_1 \)-integrable in \([a, b] \) and
\[
(D_1) \int_a^b \varphi F = [\hat{\varphi} F]_a^b - (D) \int_a^b \hat{\varphi} f.
\]
Proof: By Lemma 1.4.2, the function ψ defined by

$$\psi(x) = F(x) \phi(x) - (D) \int_a^x \phi f, \quad a \leq x \leq b,$$

is D_1-continuous and ACG in $[a, b]$. Also almost everywhere in $[a, b]$,

$$F' = f, \quad \phi'_{ap} = \phi' \text{ and } ((D) \int_a^x \phi f)'_{ap} = \phi f.$$

Hence almost everywhere in $[a, b]$,

$$\psi'_{ap} = f \phi + F \phi - \phi f = F \phi.$$

So $F \phi$ is D_1-integrable and ψ is an indefinite D_1-integral of $F \phi$.

Hence

$$(D_1) \int_a^b F \phi = \psi(b) - \psi(a)$$

$$= [F(x) \phi(x)]_a^b - (D) \int_a^b \phi f.$$

1.5. Cauchy and Harnack property

Theorem 1.5.1 (Cauchy property): If f is D_1-integrable in $[a, b]$ for every β, $a < \beta < b$, and if

$$\lim_{\beta \to b^-} (D_1) \int_a^\beta f = L$$

then f is D_1-integrable in $[a, b]$ and

$$(D_1) \int_a^b f = L.$$
Proof: Let \(b_1, b_2, \ldots, b_n, \ldots \) be an increasing sequence which converges to \(b \) with \(b_1 = a \). Then \(f \) is \(D_1 \)-integrable on each \(I_n = [b_n, b_{n+1}] \) and so there is a function \(F_n \) which is \(D_1 \)-continuous and ACG on \(I_n \) and \((F_n)'_\text{ap} = f \) almost everywhere on \(I_n \). We may suppose \(F_n(b_n) = 0 \) for all \(n \). Let

\[
F(x) = F_1(x), \quad x \in I_1
\]

\[
= F_n(x) + \sum_{k=1}^{n-1} F_k(b_{k+1}), \quad x \in I_n, \quad n \geq 2
\]

\[
= L, \quad x = b.
\]

Then since \(F \) is ACG on each \(I_n \), \(F \) is ACG on \([a, b]\). Also \(F'_\text{ap} = f \) almost everywhere in \([a, b]\). Since \(F(x) = (D_1)\int_a^x f, \quad a \leq x < b \), we have from the given condition \(D_1-\lim_{\beta \to b^-} F(\beta) = L \) and so \(F \) is \(D \)-integrable in some neighbourhood of \(b \) and hence \(F \) is \(D \)-integrable in \([a, b]\). Let

\[
\phi(x) = (D)\int_a^x F, \quad a \leq x \leq b.
\]

Then

\[
\phi'_{\text{ap}}(b) = \lim_{x \to b^+} \frac{1}{x-b} \int_b^x F = D_1-\lim_{\beta \to b^-} F(\beta) = L = F(b).
\]

Thus \(F \) is \(D_1 \)-continuous at \(x = b \). Also \(F \) is \(D_1 \)-continuous on each \(I_n \). So \(f \) is \(D_1 \)-integrable in \([a, b]\) and \(F \) is an indefinite \(D_1 \)-integral in \([a, b]\). Thus

\[
(D_1)\int_a^b f = F(b) - F(a) = F(b) = L.
\]
Theorem 1.5.2 (Harnack Property): Let \(E \subseteq [a, b] \) be a closed set with complementary intervals \(I_k = (a_k, b_k), k = 1, 2, \ldots \). Let \(f \in D_1(E) \) and \(f \in D_1([a_k, b_k]) \) for each \(k \) with

\[
F_k(x) = (D_1) \int_{a_k}^{x} f, \quad a_k \leq x \leq b_k.
\]

Let (if there are infinite number of intervals \(I_k \))

(i) \[
\sum_{k=1}^{\infty} |(D_1) \int_{a_k}^{b_k} f| < \infty.
\]

(ii) \[
\lim_{k \to \infty} \sup_{x \in (a_k, b_k]} x - a_k \int_{a_k}^{x} F_k(t) dt = 0.
\]

Then \(f \) is \(D_1 \)-integrable in \([a, b]\) and

\[
(D_1) \int_{a}^{b} f = (D_1) \int_{E} f + \sum_{k} (D_1) \int_{a_k}^{b_k} f.
\]

Remark: It may be noted that Sargent [42] has obtained the Harnack property for the \(C_1 D \)-integral with the conditions (i), (ii) replaced by

(\(\alpha \)) \[
\sum_{k=1}^{\infty} \sup_{a_k < x < b_k} \left| \frac{1}{x - a_k} \int_{a_k}^{x} F_k(t) dt \right| < \infty,
\]

(\(\beta \)) \[
\sum_{k=1}^{\infty} \sup_{a_k < x < b_k} \left| \frac{1}{b_k - x} \int_{x}^{b_k} F_k(t) dt - F_k(b_k) \right| < \infty.
\]

(see [42, property B]). But (\(\alpha \)) and (\(\beta \)) together imply (i) and (ii) and so our conditions (i) and (ii) are more relaxed. In fact, we get from [42, Lemma III] that

\[
\sum_{k=1}^{\infty} \left| \int_{a_k}^{b_k} f(t) dt \right| = \sum_{k=1}^{\infty} \left| F_k(b_k) - F_k(a_k) \right| \leq \sum \omega_k(a_k, b_k)
\]
where H is a constant and

$$\omega_k(a_k, b_k) = \max \left[\sup_{a_k < x < b_k} \left| \frac{1}{x-a_k} \int_{a_k}^{x} F_k(t) dt - F_k(a_k) \right|, \right.$$

$$\left. \sup_{a_k < x < b_k} \left| \frac{1}{b_k-x} \int_{x}^{b_k} F_k(t) dt - F_k(b_k) \right| \right].$$

Since $F_k(a_k) = 0$, (α) and (β) imply

$$\sum_{k=1}^{\infty} \int_{a_k}^{b_k} |f(t) dt| < \infty$$

implying (i). Also convergence of the series in (α) implies (ii).

This result is also known for the D-integral [41, p.257, Theorem 5.1] with the condition (ii) replaced by

$$(ii)' \lim_{k \to \infty} O(F_k; a_k, b_k) = 0$$

where $O(F_k; a_k, b_k)$ denotes oscillation of F_k in $[a_k, b_k]$. Note that for the D-integral the condition $(ii)'$ implies (ii). In fact, for the D-integral F_k is continuous and

$$\left| \frac{1}{x-a_k} \int_{a_k}^{x} F_k(t) dt \right| \leq \frac{1}{x-a_k} (R) \int_{a_k}^{x} |F_k(t)| dt \leq O(F_k; a_k, b_k)$$

and so if $(ii)'$ holds then (ii) holds. So in this case also our conditions are more relaxed.
Let

\[\psi_k(x) = F_k(x), \quad a_k \leq x \leq b_k \]

\[= F_k(b_k), \quad x > b_k \]

\[= 0, \quad x < a_k \]

and

\[F(x) = \sum_{k=1}^{\infty} \psi_k(x). \]

We shall show that \(F \) is \(D_1 \)-continuous in \([a, b]\).

If \(x \) is an interior point of some \(I_k \), say \(I_m \), then since

\[F(t) = \sum \psi_k(b_k) + F_m(t), \quad \text{for} \quad a_m < t < b_m \]

where \(\sum \) is taken for those \(k \) for which \(I_k \subset [a, a_m) \) and since \(F_m \) is \(D_1 \)-continuous, \(F \) is \(D_1 \)-continuous at \(x \). If \(x \) is an isolated point of \(E \) then \(x \) is the common endpoint of two intervals \(I_k \), say \(I_p \) and \(I_m \) where

\[b_p = x = a_m. \]

Then for small \(h > 0 \), \(F(x+h) - F(x) = F_m(x+h) \) and

\[F(x) - F(x-h) = F_p(x) - F_p(x-h). \]

Since \(F_m \) and \(F_p \) are \(D_1 \)-continuous in \([a_m, b_m]\) and in \([a_p, b_p]\) respectively,

\[D_1-lim \left[F(x+h) - F(x) \right] = F_m(a_m) = 0 \]

\[h \to 0^+ \]

and

\[D_1-lim \left[F(x) - F(x-h) \right] = F_p(x) - F_p(b_p) = 0. \]

\[h \to 0^+ \]

So \(F \) is \(D_1 \)-continuous at \(x \). If \(E \) has component intervals then clearly these intervals are closed and \(F \) is constant in these intervals and hence is \(D_1 \)-continuous there with one sided
D_1-continuity at the endpoints. Also the endpoints of the component intervals are the endpoints of suitable contiguous intervals (a_k, b_k) and so, applying the second case above, F is both sided D_1-continuous at the endpoints of the component intervals of E. The only remaining case we are to consider is that x is a limit point of endpoints of the contiguous intervals. Let x be such a limit point from the right. Let $\varepsilon > 0$ be arbitrary. Then from the condition (i) and (ii) there is k_0 such that

\[(5.1) \quad \sum_{k > k_0} |F_k(b_k)| < \varepsilon\]

\[(5.2) \quad \sup_{x \in (a_k, b_k)} \int_{x-a_k}^{x} F_k \, dt < \varepsilon, \text{ for all } k > k_0.\]

Let $\delta > 0$ be such that $(x, x+\delta)$ does not contain the intervals $I_k, 1 \leq k \leq k_0$. Let $t \in (x, x+\delta) \cap E$. Then denoting by Σ_1 the summation taken over those k for which $I_k \subseteq [x, t]$, we have from (5.1)

\[(5.3) \quad |F(t) - F(x)| = |\Sigma_1 F_k(b_k)| \leq \Sigma_1 |F_k(b_k)| \leq \sum_{k > k_0} |F_k(b_k)| < \varepsilon.

Since the functions F_k are N-integrable in $[a_k, b_k]$, ν_k is measurable in $[a, b]$ for each k by [41, p. 243, Theorem 1.3] and so F is measurable. So by (5.3), $F(t) - F(x)$ is Lebesgue integrable in $(x, x + \delta) \cap E$ and

\[(5.4) \quad (L) \quad \int_{(x, x+h) \cap E} |F(t) - F(x)| \, dt \leq \varepsilon \mu((x, x+h) \cap E) \text{ for } 0 < h < \delta,

where μ is the Lebesgue measure.
Let \(t \in (x, x + \delta) \sim E \). Then \(t \in I_k \) for some \(k \). Let \(t \in I_m \).

Denoting by \(\Sigma_2 \) the summation taken over these \(k \) for which \(I_k \subset [x, a_m] \), we have

\[
F(t) - F(x) = \Sigma_2 F_k(b_k) + F_m(t)
\]

That is

\[
(5.5) \quad |F(t) - F(x) - F_m(t)| \leq \Sigma_2 |F_k(b_k)| \leq \Sigma_k (b_k) < E
\]

Hence as above \(F(t) - F(x) - F_m(t) \) is Lebesgue integrable and so it is D-integrable in \(I_m \). The function \(F_m \) which is an indefinite \(D_1 \)-integral is D-integrable and hence \(F(t) - F(x) \) is D-integrable in \(I_m \).

Taking D-integral in \((5.5) \)

\[
\frac{1}{t - a_m} \int_{a_m}^{t} [F(\xi) - F(x)] d\xi \leq E + \frac{1}{t - a_m} \int_{a_m}^{t} F_m(\xi) d\xi,
\]

for \(a_m \leq t \leq b_m \).

Hence by \((5.2)\), since \(m > k_0 \)

\[
(5.6) \quad -2E(t - a_m) < \int_{a_m}^{t} [F(\xi) - F(x)] d\xi < 2E(t - a_m),
\]

for \(a_m \leq t \leq b_m \).

Hence

\[
(5.7) \quad \int_{a_m}^{b_m} F(\xi) d\xi \leq (2E + |F(x)|)(b_m - a_m).
\]

Since \(I_m \) is any interval \(I_k \subset (x, x + \delta) \sim E \), \((5.7)\) is true for all such intervals and so adding for these intervals
where \(\Sigma_3 \) denotes summation over those \(k \) for which \(I_k \subset (x, x + \delta) \sim E \).

Also if

\[
H_k(t) = (D) \int_{a_k}^{t} F(\xi) d\xi, \quad a_k \leq t \leq b_k,
\]

then

\[
(5.9) \quad H_k(t) = \Sigma_4 F_p(b_p) \ast (t - a_k) + G_k(t)
\]

where \(\Sigma_4 \) denotes summation over those \(p \) for which \(I_p \subset (a, a_k) \)
and \(G_k \) is defined by

\[
G_k(t) = (D) \int_{a_k}^{t} F_k(\xi) d\xi, \quad a_k \leq t \leq b_k
\]

Then for \(u, v \in [a_k, b_k] \)

\[
|G_k(u) - G_k(v)| \leq |G_k(u) - G_k(a_k)| + |G_k(v) - G_k(a_k)|
\]

\[
\leq \sup_{z \in (a_k, b_k]} \left| \int_{z-a_k}^{b_k} \left| \frac{1}{z-a_k} \int \xi \right| d\xi \right| \left(|u-a_k| + |v-a_k| \right)
\]

\[
\leq 2(b_k - a_k) \sup_{z \in (a_k, b_k]} \left| \frac{1}{z-a_k} \int_{a_k}^{b_k} \xi \right| d\xi
\]

\[
\leq 2(b_k - a_k) \sup_{z \in (a_k, b_k]} \left| \frac{1}{z-a_k} \int_{a_k}^{b_k} F_k(\xi) d\xi \right|
\]
and hence
\[\lim_{k \to \infty} 0 \left(G_k, a_k, b_k \right) = 0. \]

Therefore from (5.9)
\[(5.10) \lim_{k \to \infty} 0 \left(H_k, a_k, b_k \right) = 0. \]

The relations (5.8) and (5.10) show that \(F \) satisfies the hypothesis of the corresponding theorem for \(D \)-integral [41, p.257, Theorem 5.1]. Hence by [41, p.257, Theorem 5.1], \(F \) is \(D \)-integrable in \([x, x + h]\) and
\[(5.11) \quad (D) \int_{x}^{x+h} F = (D) \int_{x}^{x+h} F + \sum_{k}^{b_k} (D) \int_{a_k}^{b_k} F, \]

where \(\sum_{k} \) is the summation over all \(k \) for which \(I_k \subset [x, x+h] \sim E \).

The relation (5.6) being true for all intervals \(I_k \subset [x, x+\delta] \sim E \), by adding all the relations in (5.6) with (5.4), we get from (5.11)
\[(D) \int_{x}^{x+h} |F(t) - F(x)| dt \leq 2\varepsilon h \quad \text{for all} \ h, 0 < h < \delta. \]

Dividing by \(h \) and letting \(h \to 0^+ \), since \(\varepsilon \) is arbitrary,
\[\lim_{h \to 0^+} \frac{1}{h} \int_{x}^{x+h} F(t) dt = F(x). \]

If \(x \) is a limit point of endpoints of the contiguous intervals from the left then we get similarly
\[\lim_{h \to 0^+} \frac{1}{h} \int_{x-h}^{x} F(t) dt = F(x). \]
In fact, in this case left side of (5.5) will be

\[|F(t) - F(x) + F_m(t)| \]

and the summation \(E_2 \) there will be taken over those \(k \) for which \(I_k \subset [a_m, x] \).

Hence \(F \) is \(D_1 \)-continuous at \(x \). Thus \(F \) is \(D_1 \)-continuous in \([a, b]\).

We shall next show that \(F \) is ACG on \([a, b]\). Clearly \(F \) is ACG on each interval \([a_k, b_k]\). So we are to show that \(F \) is absolutely continuous on \(E \). Let

\[
g(x) = 0, \ x \in E
\]

\[
= \frac{1}{b_k - a_k} \int_{a_k}^{b_k} f, \ x \in [a_k, b_k].
\]

By the condition (i), \(g \) is Lebesgue integrable in \([a, b]\). Put

\[
G(x) = (L) \int_a^x g, \ a \leq x \leq b.
\]

If \(x \in E \), then \(G(x) = F(x) \). Since \(G \) is absolutely continuous on \([a, b]\), \(F \) is absolutely continuous on \(E \). Thus \(F \) is ACG on \([a, b]\).

Finally, since \(G = F \) on \(E \), we have \(F = G = g = 0 \) almost everywhere on \(E \). Also in \(I_k \), \(F \) and \(F_k \) differ by a constant and hence \(F' = (F_k)' = f \) almost everywhere in \(I_k \). Hence \(F' = f \) almost everywhere in \([a, b] \sim E \). So it follows that \(F \) is an indefinite \(D_1 \)-integral of \(\check{f} \) where \(\check{f}(x) = f(x) \) if \(x \in [a, b] \sim E \) and \(\check{f}(x) = 0 \) if \(x \in E \).

On the other hand if \(\psi(x) = f(x) \) if \(x \in E \) and \(\psi(x) = 0 \) if \(x \in [a, b] \sim E \), then by hypothesis \(\psi \) is \(D_1 \)-integrable in \([a, b]\). Hence \(\check{f} + \psi = f \) is \(D_1 \)-integrable in \([a, b]\) and
\[
(D_1)^{b}_{a} f = (D_1)^{b}_{a} \phi + (D_1)^{b}_{a} \psi \\
= F(b) - F(a) + (D_1)^{b}_{a} \psi \\
= \sum_k \psi_k(b) - \sum_k \psi_k(a) + (D_1)^{b}_{a} f \\
= \sum_k F_k(b_k) + (D_1)^{b}_{a} f = \sum_k (D_1)^{b_k}_{a_k} f + (D_1)^{b}_{a} f.
\]

Hence the result.

1.6. Examples

For the definitions of GM\(_1\)-integral, AP-integral and AD-integral, considered below, we refer to [19] [5] and [23] respectively. Note that AD-integral includes AP-integral.

Example 1.6.1: There is a function which is D\(_1\)-integrable but not GM\(_1\)-integrable.

Let \(\{ I_n = (a_n, b_n) \} \) be a sequence of intervals such that

(i) \(I_n \subset (0, 1) \), for all \(n \),

(ii) \(b_1 > a_1 > b_2 > a_2 > \ldots > b_n > a_n > \ldots \) and \(\lim_{n \to \infty} b_n = 0 \),

(iii) 0 is a point of dispersion of the set \(\bigcup_{n=1}^{\infty} I_n \),

(iv) \(\frac{a_n + b_n}{b_n - a_n} \to \infty \) as \(n \to \infty \).

(One may take \(a_n = \frac{1}{n} + \frac{1}{(n+1)^2} \), \(b_n = \frac{1}{n} + \frac{1}{n^2} \).
Let
\[F(x) = \frac{a_n + b_n}{2} \sin \frac{\pi(x - a_n)}{b_n - a_n} \quad \text{for } x \in I_n \]
\[= 0 \quad \text{for } x \notin \bigcup_{n=1}^{\infty} I_n. \]

Then \(F(x) \) is continuous in \([0, 1]\). Also \(F' \) exists in \((0, 1]\) but \(F' \) does not exist at 0 while \(F'_\text{ap}(0) \) exists and is 0. Since \(F \) is continuous and is ACG in \([0, 1]\) and since \(F'_\text{ap} \) exists everywhere in \([0, 1]\), \(F'_\text{ap} \) is \(D_1 \)-continuous in \([0, 1]\). Since
\[F'_\text{ap}(x) = \frac{a_n + b_n}{b_n - a_n} \cdot \pi \sin \frac{\pi(x-a_n)}{b_n-a_n} \cos \frac{\pi(x-a_n)}{b_n-a_n}, \quad \text{for } x \in I_n \]
\[= 0 , \quad \text{for } x \notin \bigcup_{n=1}^{\infty} I_n , \]
\(F'_\text{ap} \) is ACG in \([0, 1]\). Also \((F'_\text{ap})' \) exists almost everywhere on \([0,1]\).

Hence the function \(f \), where
\[f(x) = (F'_\text{ap})'(x) \quad \text{if } (F'_\text{ap})'(x) \text{ exists} \]
\[= 0 \quad \text{otherwise} \]
is \(D_1 \)-integrable and \(F'_\text{ap} \) is its indefinite \(D_1 \)-integral. But \(f \) is not \(GM_1 \)-integrable. For, if it is so then there exists an \(M_1 \)-continuous ACG function \(\tilde{\phi} \) such that \(\tilde{\phi}'_\text{ap} = f \) almost everywhere on \([0, 1]\). Since \(M_1 \)-continuity implies \(D_1 \)-continuity \(\Psi = \tilde{\phi} - F'_\text{ap} \) is \(D_1 \)-continuous, ACG in \([0, 1]\) and \(\Psi'_\text{ap} = 0 \) almost everywhere on \([0, 1]\). Hence by Corollary 1.2.1, \(\tilde{\phi} \) and \(F'_\text{ap} \) differ by a constant. Since \(\tilde{\phi} \) is \(M_1 \)-continuous at 0, \(F'_\text{ap} \) is also so at 0. Since \(F \) is
indefinite D-integral of F'_{ap}, the derivative $F'(0)$ exists. But this is a contradiction, since $F'(0)$ does not exist.

Example 1.6.2: There is a function which is D_1-integrable but not AD-integrable.

Let

$$f(x) = -\frac{1}{x^2} \cos \frac{1}{x}, \ x \neq 0$$

$$= 0, \ x = 0.$$

Then f is D_1-integrable in $[0,1]$ and

$$F(x) = \sin \frac{1}{x}, \ x \neq 0$$

$$= 0, \ x = 0$$

is its indefinite D_1-integral. In fact F is the derivative of

$$G(x) = x^2 \cos \frac{1}{x} - 2(R) \int_0^x x \cos \frac{1}{x} \ dx, \ x \neq 0$$

$$= 0, \ x = 0$$

and so F is D_1-continuous in $[0,1]$. Moreover $F \in ACG ([0,1])$ and $F' = f$ almost everywhere. Hence f is D_1-integrable in $[0,1]$ (in fact, f is CP-integrable in $[0,1]$). But f is not AD-integrable in $[0,1]$. For, if possible let φ be an indefinite AD-integral of f. Let $0 < \alpha < 1$. Then since φ is approximately continuous and ACG in $[0,1]$, $F - \varphi$ is approximately continuous and ACG in $[\alpha, 1]$. Also since $\varphi'_{ap} = f$ almost everywhere, $(F - \varphi)'_{ap} = 0$ almost everywhere in $[\alpha, 1]$. Since approximately continuous functions
possess Darboux property, by Corollary 1.2.1, there is a constant K such that $\varphi(x) = \sin \frac{1}{x} + K$ for $x \in [\alpha, 1]$. The constant K cannot be different for different α and hence $\varphi(x) = \sin \frac{1}{x} + K$ for $x \in (0, 1]$. Therefore since φ is approximately continuous at $x = 0$, $\lim_{x \to 0} \sin \frac{1}{x}$ exists. But this is a contradiction since this approximate limit does not exist. In fact, let

$$I_n = [\frac{4}{\pi(8n+3)}, \frac{4}{\pi(8n+1)}], \quad J_n = [\frac{4}{\pi(8n+7)}, \frac{4}{\pi(8n+5)}].$$

Then

$$|I_n| = \frac{8}{\pi(8n+1)(8n+3)}, \quad |J_n| = \frac{8}{\pi(8n+5)(8n+7)}.$$

So,

$$\left| \sum_{n=N}^{\infty} \frac{I_n}{\pi(8n+1)} \right| = \frac{\pi}{4} \sum_{n=N}^{\infty} \frac{8}{\pi(8n+1)(8n+3)} \geq (8N+1) \lim_{x \to \infty} \left[\int_{N}^{x} \frac{2dt}{(8t+1)(8t+3)} \right]
= (8N+1) \lim_{x \to \infty} \left[\int_{N}^{x} \frac{dt}{8t+1} - \int_{N}^{x} \frac{dt}{8t+3} \right]
= \frac{8N+1}{8} \lim_{x \to \infty} \left[\log \frac{8t+1}{8t+3} \right]_{N}^{x}
= \frac{8N+1}{8} \lim_{x \to \infty} \left[\log \frac{8x+1}{8x+3} - \log \frac{8N+1}{8N+3} \right] = \frac{8N+1}{8} \log \frac{8N+3}{8N+1}
= \frac{8N+1}{8} \log(1 + \frac{2}{8N+1}).$$
So,
\[
\lim_{N \to \infty} \frac{\sum_{n=N}^{\infty} |I_n|}{\frac{4}{\pi(8N+1)}} \geq \frac{1}{4} \lim_{x \to 0} \frac{1}{x} \log(1 + x) = \frac{1}{4}.
\]

Similarly
\[
\lim_{N \to \infty} \frac{\sum_{n=N}^{\infty} |J_n|}{\frac{4}{\pi(8N+5)}} = \frac{7}{4} (8N+5) \sum_{n=N}^{\infty} \frac{8}{\pi(8n+5)(8n+7)} \geq (8N+5) \lim_{x \to \infty} \int_{N}^{x} \frac{2dt}{(8t+5)(8t+7)} = \frac{8N+5}{8} \log(1 + \frac{2}{8N+5})
\]

and so
\[
\lim_{N \to \infty} \frac{\sum_{n=N}^{\infty} |J_n|}{\frac{4}{\pi(8N+5)}} \geq \frac{1}{4} \lim_{x \to 0} \frac{1}{x} \log(1 + x) = 1/4.
\]

Thus the sets \(\bigcup_{n=1}^{\infty} I_n \) and \(\bigcup_{n=1}^{\infty} J_n \) have positive upper density at \(x = 0 \). Also if \(x \in I_n \), then \(2n\pi + \frac{\pi}{4} \leq \frac{1}{x} \leq 2n\pi + \frac{3\pi}{4} \) and hence \(\sin \frac{1}{x} \geq \frac{1}{\sqrt{2}} \) for \(x \in I_n \) and if \(x \in J_n \), then \(2n\pi + \frac{5\pi}{4} \leq \frac{1}{x} \leq 2n\pi + \frac{7\pi}{4} \) and hence \(\sin \frac{1}{x} \leq -\frac{1}{\sqrt{2}} \) for \(x \in J_n \). That is \(\sin \frac{1}{x} \geq 1/\sqrt{2} \) for \(x \in \bigcup_{n=1}^{\infty} I_n \) and \(\sin \frac{1}{x} \leq -1/\sqrt{2} \) for \(x \in \bigcup_{n=1}^{\infty} J_n \). So \(\lim_{x \to 0} \sin \frac{1}{x} \) cannot exist.
Example 1.6.3: There is a function which is AP-integrable (and hence AD-integrable) but not D_1-integrable.

In [11] a nonnegative function φ has been constructed such that φ' exists finitely everywhere in $(0, 1]$ and $\varphi_{ap}'(0)$ exists finitely but φ is not Lebesgue integrable in $[0, 1]$. Clearly φ_{ap}' is AP-integrable and φ is its indefinite AP-integral. Note that φ is not even AD-integrable in $[0, 1]$. For if φ is so then since $\varphi \geq 0$, φ would be Lebesgue integrable (as in Theorem 1.3.4). But φ_{ap}' is not D_1-integrable in $[0, 1]$. For, if possible, let F be its indefinite D_1-integral. Then for $0 < \alpha < 1$, $F - \varphi \in ACG ([\alpha, 1])$ and $F - \varphi$ is D_1-continuous in $[\alpha, 1]$ and so as in Example 1.6.2, $F(x) = \varphi(x) + K$ for $x \in (0, 1]$ where K is a constant. Since F is D-integrable in $[0, 1]$, φ is also D-integrable in $[0, 1]$. Since $\varphi \geq 0$, φ is Lebesgue-integrable in $[0, 1]$ which is a contradiction.

Example 1.6.4: The D_1-integral and the AP-integral (and hence the AD-integrals) are not compatible.

Ellis [20] constructed a function f such that f is AP-integrable and is CP-integrable but the values of the integrals are different. Since the D_1-integral includes CP-integral and the AD-integral includes AP-integral the result follows.