LISTS OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1 Structure of Galactose Oxidase</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 1.2 Galactose Oxidase: two electron oxidation of a broad range of alcohols to the corresponding aldehydes</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 1.3 Active site forms and catalytic mechanism postulated for Galactose Oxidase</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 1.4 Model complexes of Galactose oxidase</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 1.5 Structure of vitamin B$_{12}$</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 1.6 Methylation reaction of methylcobalamin</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 1.7 Coenzyme B$_{12}$ helps in the reduction of -CH(OH)- groups to -CH$_2$- groups</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 1.8 Structure of models of Vitamin B$_{12}$</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 1.9 Representative structure of a micellar interior</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 1.10 Physical properties of aqueous solutions with surfactant core (not drawn to scale)</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 1.11(a) Sketch of micelle encapsulated copper complex</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 1.11(b) Sketch of micelle encapsulated cobalt complex</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1 Structure of Schiff Base Ligand</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 2.2 Cyclic Voltammogram of K$_3$Fe(CN)$_6$ in H$_2$O, 10$^{-3}$M solution, S.E. = NaNO$_3$, Working electrode = Platinum</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 2.3 OSWV of K$_3$Fe(CN)$_6$ in H$_2$O, 10$^{-3}$M solution, S.E. = NaNO$_3$, Working Electrode = Platinum</td>
<td>70</td>
</tr>
</tbody>
</table>
Fig. 2.4 Background voltammograms in different micellar solutions
(a) CTAB (b) SDS and (c) TritonX-100

Chapter 3

Fig. 3.1(a) Crystal Structure of Cu(Salen).

Fig. 3.1(b) Crystal Packing structure of Cu(Salen) along axis B

Fig. 3.2(a) Electronic Spectra of model compounds of Cu(Salen) in organic solvents
(i) Chloroform (ii) Acetonitrile

Fig. 3.2(b) Electronic Spectra of model compounds of Cu(Salen) in aqueous solution of surfactant micelles
(i) CTAB Acetate buffer pH = 4.2
(ii) SDS Acetate pH 4.2 and tris buffer pH 8.3

Fig. 3.3(a) Electronic Spectra of model compounds of Zn(Salen) in acetonitrile

Fig. 3.3(b) Electronic Spectra of model compounds of Zn(Salen) in aqueous solution of surfactant micelle
(i) CTAB Acetate buffer pH = 4.2

Fig. 3.4(a) Electronic Spectra of model compounds of Cu(SalenS) in aqueous solution
(i) Acetate buffer pH= 4.2
(ii) Low pH = 4.2 and high pH = 8.3 (buffer solutions)

Fig. 3.4(b) Electronic Spectra of model compounds of Cu(SalenS) in aqueous solution of surfactant micelles
(i) SDS acetate buffer pH=4.2
(ii) CTAB acetate buffer pH= 4.2
(iii) CTAB tris buffer pH = 8.3

Fig. 3.4(b) Electronic Spectra of model compounds of Cu(SalenS) in aqueous solution of surfactant micelles
(iv) SDS tris buffer pH = 8.3
(v) Cu(SalenS) in CTAB acetate buffer in high and low pH
Electronic Spectra of model compounds of Zn(SalenS) in aqueous solution (i) Acetate buffer pH = 4.2

Electronic Spectra of model compounds of Zn(SalenS) in aqueous solution of surfactant micelles
(i)CTAB (acetate buffer pH = 4.2)
(ii) SDS (acetate buffer pH = 4.2)

Electronic Spectra of model compounds of Cu(Salicyldehyde)$_2$ in organic solvents
(i) Chloroform
(ii) Dimethylsulphoxide
(iii) Acetonitrile

Electronic Spectra of model compounds of Cu(Salicyldehyde)$_2$ in aqueous solution of surfactant micelles
(i) CTAB acetate buffer pH=4.2
(ii) SDS acetate buffer pH=4.2

Electronic Spectra of model compounds Zn(Salicyldehyde)$_2$ in acetonitrile
(i) Acetonitrile

Electronic Spectra of model compounds Zn(Salicyldehyde)$_2$ in aqueous solution of CTAB (acetate buffer pH=4.2)surfactant micelle

Cyclic Voltammogram and OSWV of Cu(Salen) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaN$_3$, Working electrode=G.C.E. (i) CTAB

Cyclic Voltammogram and OSWV of Cu(Salen) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaN$_3$, Working electrode=G.C.E. (ii) SDS

Cyclic Voltammogram of Cu(Salen) (acetate buffer pH=4.2) 10^{-3}M solution in CTAB at various scan rate, S.E. = NaN$_3$, Working electrode=G.C.E.

Cyclic Voltammogram of Cu(Salen) (acetate buffer pH=4.2) 10^{-3}M solution at various scan rate in SDS at various scan rate, S.E. = NaN$_3$, Working electrode=G.C.E.

Cyclic Voltammogram and OSWV of Zn(Salen) (acetate
Fig. 3.9(ii) Cyclic Voltammogram and OSWV of Zn(Salen) (acetate buffer pH=4.2) 10^{-3}M solution, S.E. = NaNO₃, Working electrode=G.C.E. (i) CTAB (ii) SDS

Fig. 3.10(i) Cyclic Voltammogram and OSWV of Cu(SalenS) (acetate buffer pH=4.2) 10^{-3}M solution, S.E. = NaNO₃, Working electrode=G.C.E. (i) SDS

Fig. 3.11(i) OSWV of Cu(Salicyldehyde)$_2$ (acetate buffer pH=4.2) 10^{-3}M solution, S.E. = NaNO₃, Working electrode=G.C.E. (i) Acetate buffer pH=4.2

Fig. 3.11(ii) OSWV of Cu(Salicyldehyde)$_2$ (acetate buffer pH=4.2) 10^{-3}M solution, S.E. = NaNO₃, Working electrode=G.C.E. (ii) SDS

Fig. 3.11(iii) OSWV of Cu(Salicyldehyde)$_2$ (acetate buffer pH=4.2) 10^{-3}M solution, S.E. = NaNO₃, Working electrode=G.C.E. (iii) CTAB

Chapter 4

Fig. 4.1(a) Crystal Structure of Cu(Sal1,3pn) 141

Fig. 4.1(b) Hydrogen bonding for Cu(Sal1,3pn) 142

Fig. 4.1(c) Packing structure of Cu(Sal1,3pn) (i) Along axis A (ii) Along B 143

Fig. 4.2(a) Electronic Spectra of Cu (Sal1,3pn) in organic solvents (i) Acetonitrile (ii) Chloroform (iii) DMSO 144

Fig. 4.2(b) Electronic Spectra of Cu (Sal1,3-pn) in aqueous solution of surfactant micelle (i) CTAB Acetate buffer pH = 4.2 145

Fig. 4.3(a) Electronic Spectra of Zn (Sal1, 3pn) in organic solvents (a) DMSO (b) MeCN 146
Fig.4.3(b) Electronic Spectra of Zn (Sal1, 3-pn) in aqueous solution of surfactant micelles (a) CTAB (Acetate buffer pH = 4.2)

Fig.4.4(a)(i) Cyclic Voltammogram and OSWV of Cu(Sal1,3pn) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaNO_3, Working electrode=G.C.E (i) SDS

Fig.4.4(a)(ii) Cyclic Voltammogram and OSWV of Cu(Sal1,3pn) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaNO_3, Working electrode=G.C.E (ii) CTAB

Fig.4.4(b) Cyclic Voltammogram of Cu(Sal1,3pn) (acetate buffer pH=4.2) 10^{-3}M solution in SDS at various scan rate, S.E. = NaNO_3, Working electrode=G.C.E

Fig.4.4(c) Cyclic Voltammogram of Cu(Sal1,3pn) (acetate buffer pH=4.2) 10^{-3}M solution in CTAB at various scan rate, S.E. = NaNO_3, Working electrode=G.C.E

Fig.4.5(a)(i) OSWV of Zn(Sal1,3pn) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaNO_3, Working electrode=G.C.E. (i) CTAB

Fig.4.5(a)(ii) OSWV of Zn(Sal1,3pn) (acetate buffer pH=4.2), 10^{-3}M solution, S.E. = NaNO_3, Working electrode=G.C.E. (ii) SDS

Chapter 5

Fig 5.1 (a) Oxidation spectra of Cu(Salen) and Zn(Salen) by Ammonium Ceric Nitrate in CTAB micelles (acetate buffer of pH 4.2). (i) Cu(Salen) (ii) Zn(Salen) (iii) Overlay spectra of Cu(Salen) and Zn(Salen)

Fig 5.1 (b) Oxidation spectra of Cu(Salen) and Zn(Salen) by Ammonium Ceric Nitrate in organic solvent DMSO (dimethylsulphoxide). (i) Cu(Salen) in DMSO (ii) Zn(Salen) in DMSO

Fig 5.1 (c) Oxidation spectra of Cu(Salen) and Zn(Salen) by Ammonium Ceric Nitrate in organic solvent MeCN (acetonitrile)
(i) Cu(Salen)
(ii) Zn(Salen)

Fig 5.2(a) Oxidation spectra of Cu(Salicyldehde)$_2$ and Zn(Salicyldehde)$_2$ by Ammonium Ceric Nitrate in CTAB micelles (acetate buffer of pH 4.2).

(i) Cu(Salicyldehde)$_2$
(ii) Zn(Salicyldehde)$_2$
(iii) Overlay spectra of Cu(Salicyldehde)$_2$ and Zn(Salicyldehde)$_2$

Fig 5.2(b) Oxidation spectra of Cu(Salicyldehde)$_2$ Ammonium Ceric Nitrate in organic solvent DMSO(dimethylsulphoxide)

Fig 5.2(c) Oxidation spectra of Cu(Salicyldehde)$_2$ by Ammonium Ceric Nitrate in organic solvent MeCN (acetonitrile)

Fig 5.3(a) Oxidation spectra of Cu(Sal1,3pn) and Zn(Sal1,3pn) by Ammonium Ceric Nitrate in aqueous surfactant solutions of CTAB micelles (acetate buffer of pH 4.2).

(i) Cu(Sal1,3pn)
(ii) Zn(Sal1,3pn)
(iii) Overlay spectra of Cu(Sal1,3pn) and Zn(Sal1,3pn)

Fig 5.3(b) Oxidation spectra of Cu(Sal1,3pn) and Zn(Sal1,3pn) by Ammonium Ceric Nitrate in organic solvent DMSO(dimethylsulphoxide).

(i) Cu(Sal1,3pn)
(ii) Zn Sal1,3 pn

Fig 5.3(c) Oxidation spectra of Cu(Sal1,3pn) by Ammonium Ceric Nitrate in organic solvent MeCN (acetonitrile)

Fig 5.4 ESR spectra of Cu(Salen) in CTAB micellar solution in acetate buffer of pH 4.2

Fig 5.5 ESR spectra of Zn(Salen) on oxidation with Ammonium Ceric Nitrate in CTAB micellar solution in acetate buffer of pH 4.2

Fig 5.6 ESR spectra of Cu(Sal1,3pn) on oxidation with Ammonium Ceric Nitrate in Acetonitrile
CHAPTER 6

Fig. 6.1 (a) Structure of Cu(Salen) 206

Fig. 6.1 (b) Structure of Cu(Salen) coordinated with a base 206

Fig. 6.1 (c) Structure of Cu(Salen) coordinated with a proton 207

Fig. 6.1 (d) Structure of Cu(Salen) coordinated with a water molecule 207

Fig. 6.2 Structure of Salen 208

Fig. 6.3 (a) Structure of Zn(Salen) 209

Fig. 6.3 (b) Structure of Zn(Salen) coordinated with a proton 209

CHAPTER 7

Fig. 7.1 (a) Crystal Structure of Co(dmg)$_2$(imi)$_2$ 238

Fig. 7.2 Electronic Spectra of Co(dmg)$_2$Clpy in tris buffer solution of pH = 8.5 239
(a) H$_2$O (b) SDS
(c) Overlap spectra in Water and SDS

Fig. 7.3 Electronic Spectra of Co(dmg)$_2$(Imi)$_2$ in tris buffer solution of pH = 8.5 240
(a) H$_2$O

Fig. 7.4 Electronic Spectra of methylpyridinatocobaloxime in phosphate buffer solution of pH=7.0 241
(a) H$_2$O (b) CTAB (c) SDS
(d) Overlap spectra in Water, CTAB and SDS

Fig. 7.5 Electronic Spectra of vitamin B$_{12}$ in phosphate buffer solution of pH= 7.0 243
(a) H$_2$O (b) CTAB
(c) Overlap spectra in Water and CTAB

Fig. 7.6 Electronic Spectra of methylcobalamin in phosphate buffer solution of pH=7.0 244
(a) H$_2$O (b) SDS
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
</table>
| Fig. 7.6 | Electronic Spectra of methylcobalamin in phosphate buffer solution of pH=7.0
(a) Overlap spectra in water and SDS |
| Fig. 7.7(a) | Cyclic Voltammogram and OSWV of Co(dmgl)$_2$Clpy in tris buffer (pH=8.5), 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(a) H2O |
| Fig. 7.7(b) | Cyclic Voltammogram and OSWV of Co(dmgl)$_2$Clpy in tris buffer (pH=8.5), 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(b) CTAB |
| Fig. 7.7(c) | Cyclic Voltammogram and OSWV of Co(dmgl)$_2$Clpy in tris buffer (pH=8.5), 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(c) SDS |
| Fig. 7.8(a) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(imi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(a) H2O |
| Fig. 7.8(b) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(imi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(b) CTAB |
| Fig. 7.8(c) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(imi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(c) SDS |
| Fig. 7.9(a) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(1-meimi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(a) H2O |
| Fig. 7.9(b) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(1-Meimi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(b) CTAB |
| Fig. 7.9(c) | Cyclic voltammogram and OSWV of Co(dmgl)$_2$(1-Meimi)$_2$ in tris buffer pH = 8.5, 10$^{-3}$ M solution, S.E. = NaN03, Working electrode=G.C.E.
(c) SDS |
| Fig. 7.10 | Cyclic voltammogram and OSWV of Methylpyridinatocobaloxime complex, 10$^{-3}$ M solution, |
Fig. 7.11 Cyclic Voltammogram and OSWV of Vitamin B$_{12}$ in phosphate buffer (pH=7.0), 10$^{-3}$M solution, S.E. = NaNO$_3$, Working electrode=Platinum (a) H$_2$O

Fig. 7.12 Cyclic voltammogram and OSWV of Methylcobalamin in Phosphate buffer (pH=7.0), 10$^{-3}$M solution, S.E. = NaNO$_3$, Working electrode=G.C.E. (a) H$_2$O