TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>THEORY OF TB-LMTO AND FP-LMTO METHODS</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The TB-LMTO Method</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1</td>
<td>The Energy Band Problem</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Partial waves for a single Muffin-Tin</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3</td>
<td>The Muffin-Tin Orbitals</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Expansion theorem for Muffin-Tin Tails</td>
<td>10</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Energy independent Muffin-Tin orbitals</td>
<td>11</td>
</tr>
<tr>
<td>1.2.6</td>
<td>One-center expansion and structure constants</td>
<td>12</td>
</tr>
<tr>
<td>1.2.7</td>
<td>The Secular Matrix</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>The Full Potential - LMTO method</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Superconducting Transition Temperature Calculation</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>Structures and Brillouin zone of hcp, bcc and fcc lattices</td>
<td>26</td>
</tr>
<tr>
<td>II</td>
<td>BAND STRUCTURE, DENSITY OF STATES, PHASE TRANSITION AND SUPERCONDUCTIVITY</td>
<td>30</td>
</tr>
<tr>
<td>2.1</td>
<td>Preamble</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Electronic Bands in Materials</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Density of States</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Phase Transition</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Historical development of the critical temperature of simple elements</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Superconductivity</td>
<td>39</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Techniques used to transform normal elements into superconductors</td>
<td>40</td>
</tr>
</tbody>
</table>
2.6 General Properties of Super Conductor

2.6.1 Electrical resistance

2.6.2 Diamagnetic property

2.6.3 Effect of magnetic field

2.6.4 Effect of heavy current

2.6.5 Effect of Pressure

2.7 Uses of High Temperature Superconductor

III ELECTRONIC BAND STRUCTURE, DENSITY OF STATES, PHASE TRANSITION AND SUPER CONDUCTIVITY OF Ti(TITANIUM), Zr(ZIRCONIUM) AND Hf(HAFNIUM) UNDER HIGH PRESSURE

3.1 Preface

3.2 Reassess of Literature

3.3 Calculational Procedure

3.4 Physical, Chemical Properties and Applications of Ti (Titanium), Zr (Zirconium) and Hf (Hafnium)

3.4.1 Physical and Chemical properties of Ti (Titanium), Zr Zirconin and Hf Hafinium

3.4.2 Applications of Ti (Titanium), Zr (Zirconium) and Hf (Hafnium)

3.5 Tables

3.5.1: Electrons in s,p and d shells of hcp-Ti (Titanium) at different reduced volumes

3.5.2: Ground state properties of Ti (Titanium)

3.5.3: Phase transition pressures for Ti (Titanium)

3.5.4 Pressure and lattice constant of Zr (Zirconium)

3.5.5 Ground state properties of Zr (Zirconium)

3.5.6 Structural phase transition pressure of Zr (Zirconium)
3.5.7 Pressure and lattice constant of Hf (Hafnium) 53
3.5.8 Ground state properties of Hf (Hafnium) 54
3.5.9 Structural phase transition pressure of Hf (Hafnium) 54
3.5.10 T_c as a function of pressure for Ti (Titanium) - hcp structure 54
3.5.11 T_c as a function of pressure for Ti (Titanium) φ-structure 55
3.5.12: T_c as a function of pressure for Ti(Titanium) – bcc structure 55
3.5.13. Superconducting transition temperature of hcp and bcc Zr (Zirconium) 56
3.5.14. Superconducting transition temperature of hcp and bcc Hf (Hafnium) 56

3.6 Figures 57

3.6.1 Band structure of hcp-Ti (Titanium) at $V/V_o=1$ (normal pressure) 57
3.6.2 Density of states of hcp-Ti at $V/V_o=1$(normal pressure) 57
3.6.3 Band structure of hcp-Zr (Zirconium) at $V/V_o=1$ (normal pressure) 58
3.6.4 Density of states of hcp-Zr (Zirconium) at $V/V_o=1$ (normal pressure) 58
3.6.5 Band structure of hcp-Hf (Hafnium) at $V/V_o=1$ (normal pressure) 59
3.6.6 Density of states of hcp-Hf(Hafnium) at $V/V_o=1$ (normal pressure) 59
3.6.7 Band structure of hcp-Ti (Titanium) at $V/V_o=0.9$ (high pressure) 60
3.6.8 Density of states of hcp-Ti (Titanium) at $V/V_o=0.9$ (high pressure) 60
3.6.9 Band structure of hcp-Zr (Zirconium) at $V/V_o=0.9$ (high pressure) 61
3.6.10 Density of states of hcp-Zr (Zirconium) at $V/V_0=0.9$ (high pressure) 61

3.6.11 Band structure of hcp-Hf (Hafnium) at $V/V_0=0.9$ (high pressure) 62

3.6.12 Density of states of hcp-Hf (Hafnium) at $V/V_0=0.9$ (high pressure) 62

3.6.13 Band structure of bcc-Ti (Titanium) at $V/V_0=0.5$ (high pressure) 63

3.6.14 Density of states of bcc-Ti (Titanium) at $V/V_0=0.5$ (high pressure) 63

3.6.15 Band structure of bcc-Zr (Zirconium) at $V/V_0=0.8$ (high pressure) 64

3.6.16 Density of states of bcc-Zr (Zirconium) at $V/V_0=0.8$ (high pressure) 64

3.6.17 Band structure of bcc-Hf (Hafnium) at $V/V_0=0.75$ (high pressure) 65

3.6.18 Density of states of bcc-Hf (Hafnium) at $V/V_0=0.75$ (high pressure) 65

3.6.19 Band structure of bcc-Ti (Titanium) at $V/V_0=0.4$ (high pressure) 66

3.6.20 Density of states of bcc-Ti (Titanium) at $V/V_0=0.4$ (high pressure) 66

3.6.21 Band structure of bcc-Zr (Zirconium) at $V/V_0=0.4$ (high pressure) 67

3.6.22 Density of states of bcc-Zr (Zirconium) at $V/V_0=0.4$ (high pressure) 67

3.6.23 Band structure of bcc-Hf (Hafnium) at $V/V_0=0.4$ (high pressure) 68

3.6.24 Density of states of bcc-Hf (Hafnium) at $V/V_0=0.4$ (high pressure) 68

3.6.25 Total energy versus reduced volume curve for Ti (Titanium) 69
3.6.26 Calculated total energy versus c/a graph for (a). hcp-Ti (Titanium) (b). Omega – Ti (Titanium)

3.6.27 Total energy versus reduced volume curve of Zr (Zirconium)

3.6.28 Total energy versus reduced volume curve of Hf (Hafnium)

3.6.29. The relation connecting reduced volume and Lattice constant of Ti(Titanium)

3.6.30. The relation connecting reduced volume and Pressure of Ti(Titanium)

3.6.31. The relation connecting lattice constant and Pressure of Ti(Titanium)

3.6.32. The relation connecting reduced volume and Lattice constant of Zr(Zirconium)

3.6.33. The relation connecting reduced volume and Pressure of Zr(Zirconium)

3.6.34. The relation connecting lattice constant and Pressure of Zr (Zirconium)

3.6.35. The relation connecting reduced volume and Lattice constant of Hf(Hafnium)

3.6.36. The relation connecting reduced volume and Pressure of Hf (Hafnium)

3.6.37. The relation connecting lattice constant and Pressure of Hf (Hafnium)

3.6.38. The relation connecting reduced volume and Lattice constant of Ti(Titanium), Zr (Zirconium) and Hf (Hafnium)

3.6.39. The relation connecting reduced volume and Pressure of Ti (Titanium), Zr (Zirconium) and Hf (Hafnium)

3.6.40. The comparison of reduced volume, lattice constant and Pressure of Ti (Titanium), Zr (Zirconium) and Hf (Hafnium)

3.7 Consequence and Discussions
3.7.1 Normal and high pressure band structure and density of states 79
3.7.2 Ground state properties 80
3.7.3 Structural phase transition 82
3.7.4 Superconductivity 86

3.8 Conclusion 90

IV EFFECT OF PRESSURE ON THE BAND STRUCTURE, DENSITY OF STATES, STRUCTURAL PHASE TRANSITION AND SUPERCONDUCTIVITY OF V(VANADIUM), Nb (NIOBIUM) AND Ta(TANTALUM) 91

4.1 Foreword 91

4.2 Retrace of Literature 92

4.3 Calculational Procedure 94

4.4 Physical, Chemical properties and applications of V (Vanadium), Nb(Niobium) and Ta (Tantalum) 95

4.4.1 Physical and Chemical properties of V (Vanadium), Nb(Niobium) and Ta (Tantalum) 95

4.4.2 Application of V (Vanadium), Nb(Niobium) and Ta (Tantalum) 96

4.5 Tables 98

4.5.1 Electrons in s,p and d shells of bcc - V (Vanadium) at different reduced volumes 98

4.5.2: T_c as a function of pressure for V (Vanadium) (bcc structure) 98

4.5.3: T_c as a function of pressure for V (Vanadium) (fcc structure) 99

4.5.4: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B'_0) values of V (Vanadium) 99

4.5.5: Electrons in s,p and d shells of bcc - Nb (Niobium) at different reduced volumes 99
4.5.6: T_c as a function of pressure for Nb (Niobium) (bcc structure) 100

4.5.7: T_c as a function of pressure for Nb (Niobium) (fcc structure) 100

4.5.8: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B'_0) values of Nb (Niobium) 100

4.5.9: Electrons in s,p and d shells of bcc - Ta (Tantalum) at different reduced volumes 101

4.5.10: T_c as a function of pressure for Ta (Tantalum) (bcc structure) 101

4.5.11: T_c as a function of pressure for Ta (Tantalum) (fcc structure) 102

4.5.12: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B'_0) values of Ta (Tantalum) 102

4.6 Figures 103

4.6.1 Band structure of bcc-V (Vanadium) at $V/V_0=1$ (normal pressure) 103

4.6.2 Density of states of bcc-V (Vanadium) at $V/V_0=1$ (normal pressure) 103

4.6.3 Band structure of bcc-Nb (Niobium) at $V/V_0=1$ (normal pressure) 104

4.6.4 Density of states of bcc-Nb (Niobium) at $V/V_0=1$ (normal pressure) 104

4.6.5 Band structure of bcc-Ta (Tantalum) at $V/V_0=1$ (normal pressure) 105

4.6.6 Density of states of bcc-Ta (Tantalum) at $V/V_0=1$ (normal pressure) 105

4.6.7 Band structure of fcc –V (Vanadium) at $V/V_0=0.7$ (high pressure) 106

4.6.8 Density of states of fcc-V (Vanadium) at $V/V_0=0.7$ (high pressure) 106
4.6.9 Band structure of fcc-Nb (Niobium) at V/Vo=0.68 (high pressure) 107
4.6.10 Density of states of fcc-Nb (Niobium) at V/Vo=0.68 (high pressure) 107
4.6.11 Band structure of fcc-Ta (Tantalum) V/Vo=0.65 (high pressure) 108
4.6.12 Density of states of fcc-Ta (Tantalum) at V/Vo=0.65 (high pressure) 108
4.6.13 Total energy versus reduced volume curve for V (Vanadium) 109
4.6.14 Total energy versus reduced volume curve for Nb (Niobium) 110
4.6.15 Total energy versus reduced volume curve for Ta (Tantalum) 111
4.6.16 The relation connecting reduced volume and Lattice constant of V (Vanadium) 112
4.6.17 The relation connecting reduced volume and Pressure of V (Vanadium) 112
4.6.18 The relation connecting Lattice constant and Pressure of V (Vanadium) 113
4.6.19 The relation connecting reduced volume and Lattice constant of Nb (Niobium) 113
4.6.20 The relation connecting reduced volume and Pressure of Nb (Niobium) 114
4.6.21 The relation connecting lattice constant and Pressure of Nb (Niobium) 114
4.6.22 The relation connecting reduced volume and Lattice constant of Ta (Tantalum) 115
4.6.23 The relation connecting reduced volume and Pressure of Ta (Tantalum) 115
4.6.24 The relation connecting Lattice constant and Pressure of Ta (Tantalum) 116
4.6.25. The relation connecting reduced volume and Lattice constant of V (Vanadium), Nb (Niobium) and Ta (Tantalum)

4.6.26. The relation connecting reduced volume and Pressure of V (Vanadium), Nb (Niobium) and Ta (Tantalum)

4.6.27. The comparison of reduced volume, Lattice constant and Pressure of V (Vanadium), Nb (Niobium) and Ta (Tantalum)

4.7 Upshot and consultation

4.7.1 Normal and high pressure band structure and density of states

4.7.2 Ground State Properties

4.7.3 Structural Phase Transition

4.7.4 Superconductivity

4.8 Culmination

HIGH PRESSURE BAND STRUCTURE, DENSITY OF STATES, STRUCTURAL PHASE TRANSITION AND SUPERCONDUCTING TRANSITION IN Ni (NICKEL), Pd (PALLADIUM) AND Pt (PLATINUM)

5.1 Prologue

5.2 Swot up of Literature

5.3 Estimation Procedure

5.4 Physical, Chemical Properties and applications of Ni (Nickel), Pd (Palladium) and Pt (Platinum)

5.4.1 Physical and Chemical Properties of Ni (Nickel), Pd (Palladium) and Pt (Platinum)

5.4.2 Applications of Ni (Nickel), Pd (Palladium) and Pt (Platinum)

5.5 Tables

5.5.1: Electrons in s,p and d shells of fcc - Ni (Nickel) at different reduced volumes
5.5.2: \(T_c \) as a function of pressure for Ni (Nickel) (hcp structure) 144

5.5.3: Equilibrium lattice constant \((a_0) \), bulk modulus \((B_0) \) and its pressure derivative \((B_0') \) values of Ni (Nickel) 144

5.5.4: Electrons in \(s,p \) and \(d \) shells of fcc – Pd (Palladium) at different reduced volumes 144

5.5.5: \(T_c \) as a function of pressure for Pd (Palladium) (hcp structure) 145

5.5.6: Equilibrium Lattice constant \((a_0) \), bulk modulus \((B_0) \) and its pressure derivative \((B_0') \) values of Pd (Palladium) 145

5.5.7: Electrons in \(s,p \) and \(d \) shells of fcc - Pt (Platinum) at different reduced volumes 145

5.5.8: \(T_c \) as a function of pressure for Pt (Platinum) (hcp structure) 146

5.5.9: Equilibrium Lattice constant \((a_0) \), bulk modulus \((B_0) \) and its pressure derivative \((B_0') \) values of Pt (Platinum) 146

5.6. Figures 147

5.6.1 Band structure of fcc-Ni (Nickel) at \(V/V_0=1 \) (normal pressure) 147

5.6.2 Density of states of fcc-Ni (Nickel) at \(V/V_0=1 \) (normal pressure) 147

5.6.3 Band structure of fcc-Pd (Palladium) at \(V/V_0=1 \) (normal pressure) 148

5.6.4 Density of states of fcc-Pd (Palladium) at \(V/V_0=1 \) (normal pressure) 148

5.6.5 Band structure of fcc-Pt (Platinum) at \(V/V_0=1 \) (normal pressure) 149

5.6.6 Density of states of fcc-Pt (Platinum) at \(V/V_0=1 \) (normal pressure) 149

5.6.7 Band structure of hcp-Ni (Nickel) at \(V/V_0=0.85 \) (high pressure) 150
5.6.8 Density of states of hcp-Ni (Nickel) at $V/V_0=0.85$ (high pressure)

5.6.9 Band structure of hcp-Pd (Palladium) at $V/V_0=0.83$ (high pressure)

5.6.10 Density of states of hcp-Pd(Palladium) at $V/V_0=0.83$ (high pressure)

5.6.11 Band structure of hcp-Pt (Platinum) $V/V_0=0.8$ (high pressure)

5.6.12 Density of states of hcp-Pt (Platinum) $V/V_0=0.8$ (high pressure)

5.6.13. The relation connecting reduced volume and Lattice constant of Ni (Nickel)

5.6.14. The relation connecting reduced volume and Pressure of Ni (Nickel)

5.6.15. The relation connecting lattice constant and Pressure of Ni (Nickel)

5.6.16. The relation connecting reduced volume and Lattice constant of Pd (Palladium)

5.6.17. The relation connecting reduced volume and Pressure of Pd (Palladium)

5.6.18. The relation connecting Lattice constant and Pressure of Pd (Palladium)

5.6.19. The relation connecting reduced volume and Lattice constant of Pt (Platinum)

5.6.20. The relation connecting reduced volume and Pressure of Pt (Platinum)

5.6.21. The relation connecting Lattice constant and Pressure of Pt (Platinum)

5.6.22. The relation connecting total energy and reduced volume of Ni (Nickel)

5.6.23. The relation connecting total energy and reduced volume of Pd (Palladium)

5.6.24. The relation connecting total energy and reduced volume of Pt (Platinum)
5.7 Outcome and Dialogue

5.7.1 Normal and high pressure Band structure and density of states

5.7.2 Ground State Properties

5.7.3 Structural Phase Transition

5.7.4 Superconductivity

5.8 Closing Moments

VI

PRESSURE DEPENDENCE OF BAND STRUCTURE, DENSITY OF STATES, STRUCTURAL PHASE TRANSITION AND SUPERCONDUCTIVITY IN Cu(COPPER), Ag (SILVER) AND Au(GOLD)

6.1 Overture

6.2 Revision of Literature

6.3 Work out of Procedure

6.4 Physical, Chemical Properties and Applications of Cu(Copper), Ag (Silver) and Au(Gold)

6.4.1 Physical and Chemical Properties of Cu(Copper), Ag (Silver) and Au(Gold)

6.4.2 Applications Physical and Chemical Properties of Cu(Copper), Ag (Silver) and Au(Gold)

6.5. Tables

6.5.1: Electrons in s,p and d shells of fcc - Cu (Copper) at different reduced volumes

6.5.2: T_c as a function of pressure for Cu (Copper) (hcp structure)

6.5.3: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B_0') values of Cu (Copper)

6.5.4: Electrons in s,p and d shells of fcc – Ag (Silver) at different reduced volumes

6.5.5: T_c as a function of pressure for Ag (Silver) (hcp structure)
6.5.6: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B'_0) values of Ag (Silver)

6.5.7: Electrons in s,p and d shells of fcc - Au (Gold) at different reduced volumes

6.5.8: T_c as a function of pressure for Au (Gold) (hcp structure)

6.5.9: Equilibrium lattice constant (a_0), bulk modulus (B_0) and its pressure derivative (B'_0) values of Au (Gold)

6.6 Figures

6.6.1 Band structure of fcc-Cu (Copper) at $V/V_0=1$ (normal pressure)

6.6.2 Density of states of fcc-Cu (Copper) at $V/V_0=1$ (normal pressure)

6.6.3 Band structure of fcc-Ag (Silver) at $V/V_0=1$ (normal pressure)

6.6.4 Density of states of fcc-Ag (Silver) at $V/V_0=1$ (normal pressure)

6.6.5 Band structure of fcc-Au (Gold) at $V/V_0=1$ (normal pressure)

6.6.6 Density of States of fcc-Au(Gold) at $V/V_0=1$ (normal pressure)

6.6.7 Band structure of hcp-Cu (Copper) at $V/V_0=0.65$ (high pressure)

6.6.8 Density of states of hcp-Cu (Copper) at $V/V_0=0.65$ (high pressure)

6.6.9 Band structure of hcp-Ag (Silver) at $V/V_0=0.62$ (high pressure)

6.6.10 Density of states of hcp-Ag (Silver) at $V/V_0=0.62$ (high pressure)

6.6.11 Band structure of hcp-Au (Gold) $V/V_0=0.65$ (high pressure)

xxi
6.6.12 Density of states of hcp-Au (Gold) at V/V₀=0.65 (high pressure)

6.6.13 The relation connecting reduced volume and Lattice constant of Cu (Copper)

6.6.14 The relation connecting reduced volume and Pressure of Cu (Copper)

6.6.15 The relation connecting lattice constant and Pressure of Cu (Copper)

6.6.16 The relation connecting reduced volume and Lattice constant of Ag (Silver)

6.6.17 The relation connecting reduced volume and Pressure of Ag (Silver)

6.6.18 The relation connecting Lattice constant and Pressure of Ag (Silver)

6.6.19 The relation connecting reduced volume and Lattice constant of Au (Gold)

6.6.20 The relation connecting reduced volume and Pressure of Au (Gold)

6.6.21 The relation connecting Lattice constant and Pressure of Au (Gold)

6.6.22 The relation connecting total energy and reduced volume of Cu (Copper)

6.6.23 The relation connecting total energy and reduced volume of Ag (Silver)

6.6.24 The relation connecting total energy and reduced volume of Au (Gold)

6.7 Results and Discussions

6.7.1 Normal and High Pressure Band structure and Density of States

6.7.2 Ground State Properties

6.7.3 Structural Phase Transition

6.7.4 Superconductivity

6.8 Finale
STRUCTURAL CHANGES, PHASE STABILITY AND SUPERCONDUCTIVITY – A COMPARATIVE ANALYSIS

7.1 Instigation

7.2. Comparative Analysis

7.2.1 Structural changes and Phase stability

7.2.2 Superconductivity

7.3. Tables

7.3.1 Structural phase transition (hcp to bcc) and onset of superconducting transition in Group I Vb transition metals

7.3.2 Structural phase transition (bcc to fcc) and onset of superconducting transition in Group Vb transition metals

7.3.3. Structural phase transition (fcc to hcp) and onset of superconducting transition in Group VIII transition metals

7.3.4. Structural phase transition (fcc to hcp) and onset of superconducting transition in Group Ib transition metals

7.4. Figures

7.4.1. Phase transition pressure in Structural changes and Phase stability of transition metals

7.4.2. Phase transition reduced volume in Structural changes and Phase stability of transition metals

7.4.3. Onset of superconducting transition pressure in transition metals

7.4.4. Onset of superconducting transition temperature in transition metals

7.5 Cessation

SUMMARY AND CONCLUSION

REFERENCES

ANNEXURE