Contents

Chapter 1 General introduction ... 1-22
 1.1. Crustacean cell culture ... 2
 1.2. Cell culture from shrimp: an economically important crustacean 3
 1.2.1. The history of shrimp cell culture .. 4
 1.2.2. Animal species used in shrimp cell culture trials - a major concern ... 5
 1.2.3. Penaeus monodon an economically important penaeid shrimp 6
 1.2.4. Most commonly used medium for shrimp cell culture 8
 1.2.5. Organic and inorganic supplements added to improve growth of shrimp cells in vitro ... 9
 1.2.6. Tissues and organs used for shrimp cell culture development 11
 1.2.7. Longevity and sub-culturing of the shrimp cell culture 13
 1.2.8. Virus susceptibility tests in various shrimp cell culture system 14
 1.3. Lymphoid organ cell culture- a promising in vitro system 15
 1.4. Importance of ‘specific’ medium for shrimp cell culture - a stepping stone for cell line development ... 18
 1.5. Molecular approaches for in vitro transformation of shrimp cells and its immortalization ... 19
 1.6. Critical analysis on shrimp cell line development and significance in this study .. 21

Chapter 2 A novel medium for the development of in vitro cell culture system from Penaeus monodon .. 23-51
 2.1. Introduction .. 23
 2.2. Materials and methods ... 25
 2.2.1. Design of the experiment ... 25
 2.2.2. Experimental animals .. 25
2.2.3. Analysis of haemolymph .. 26
 2.2.3.1. Collection of haemolymph .. 26
 2.2.3.2. Analysis of free amino acids .. 26
 2.2.3.3. Analysis of fatty acids .. 27
 2.2.3.4. Analysis of metal ions ... 27
 2.2.4. Formulation of shrimp cell culture medium (SCCM) base composition .. 28
 2.2.5. Artificial seawater and natural seawater as liquid base 28
 2.2.6. Effect of inorganic salts and trace elements 29
 2.2.7. Effect of organic supplements .. 29
 2.2.8. Preparation of shrimp cell culture medium (SCCM) 30
 2.2.9. Development of primary cell cultures 31
 2.2.10. MTT reduction assay for measuring cellular metabolism 32
 2.2.11. Comparison of SCCM with other selected media 33
 2.2.12. Cell dislodgement and passaging .. 33
 2.2.13. Statistical analysis ... 33

2.3. Results ... 34
 2.3.1. Analysis of haemolymph .. 34
 2.3.2. Artificial seawater and natural seawater as liquid base 35
 2.3.3. Effect of inorganic salts, trace elements and organic supplements ... 35
 2.3.4. Preparation of shrimp cell culture medium (SCCM) 35
 2.3.5. Development of primary cell cultures 36
 2.3.6. Comparison of SCCM with other selected media 37
 2.3.7. Cell dislodgement and passaging .. 37

2.4. Discussion .. 38
Chapter 3 Screening and optimization of growth factors and their potential
impacts on lymphoid cell culture: Cellular activity and viral
susceptibility... 53-99

3.1. Introduction .. 53

3.2 Materials and methods .. 58

 3.2.1. Experimental animals ... 58

 3.2.2. Development of primary lymphoid cell cultures 58

 3.2.3. Experimental design for screening and optimization of growth
 factors .. 59
 3.2.3.1. Growth factors and their preparation 60
 3.2.3.2. Primary screening of growth factors - One-factor-at-a-time
 (Classical method) ... 60
 3.2.3.3. Statistical screening and optimization of growth factors
 by Plackett-Burman factorial design and central composite
 design using response surface methodology (RSM) 61
 3.2.3.4. Validation of the model ... 65

 3.2.4. Mitotic activity of the cells grown in growth factor optimized
 shrimp cell culture medium ... 66

 3.2.5. Molecular cell biology of lymphoid cell culture grown in SCCM 66
 3.2.5.1. Mitotic events in lymphoid cells in vitro 66
 3.2.5.2. Entry of lymphoid cells into S-phase of cell cycle and DNA
 synthesis .. 67
 3.2.5.3. Cell cycle gene expression in lymphoid cell culture 68
 3.2.5.3.1. RNA isolation .. 68
 3.2.5.3.2. RT-PCR of cell cycle genes 69
 3.2.5.4. Actin cytoskeleton organization in lymphoid cells grown in
 SCCM ... 70
Chapter 4 Differential expression of telomerase in various tissues and primary lymphoid cell culture, and identification and partial sequencing of telomerase reverse transcriptase (TERT) gene in Penaeus monodon ... 101-131

4.1. Introduction... 101

4.2. Materials and methods.. 104

4.2.1. Detection of telomerase activity by telomeric repeat amplification protocol (TRAP) .. 104

4.2.1.1. Experimental animals.. 105

4.2.1.2. Preparation of internal amplification standard (ITAS) as internal control for TRAP assay ... 105

4.2.1.2.1. Primers designed to construct ITAS and PCR amplification 106

4.2.1.2.2. Cloning of ITAS with pGEM-T Easy vector and transformation 107

4.2.1.2.3. Confirmation of insert in doned vector and propagation of the confirmed colony .. 108

4.2.1.2.4. Extraction and purification of plasmid containing template for ITAS ... 108

4.2.1.2.5. Restriction digestion to release ITAS template and purification ... 109

4.2.1.3. Preparation of telomerase extracts from tissues and cell cultures ... 110

4.2.1.4. Elongation of telomeric repeats on TS primer by telomerase activity ... 111

4.2.1.5. PCR amplification of extended telomeric repeats (telomere) on TS primer ... 111

4.2.1.6. Preparation of nondenaturing acrylamide gel and electrophoretic analysis of amplified telomere on TS primer .. 112
4.2.2. Identification of telomere repeats of *Penaeus monodon* by sequencing the TRAP products

4.2.2.1. Extraction of TRAP products ... 113
4.2.2.2. PCR amplification of TRAP products, purification and sequencing 113
4.2.2.3. Sequence analysis and identification of telomeric repeats from *P. monodon*. ... 114

4.2.3. Identification of *Penaeus monodon* telomerase reverse transcriptase gene (*PmTERT*) ... 114

4.2.3.1. Identification of *Daphnia pulex TERT* genes and designing primers to amplify TERT sequence of *P. monodon*.......................... 115
4.2.3.2. Designing a primer sequence for the amplification of *PmTERT* gene by using complementary sequence from *Daphnia pulex* 116
4.2.3.3. Amplification of *PmTERT* gene from *P. monodon* 116
4.2.3.3.1. Experimental animal .. 116
4.2.3.3.2. Total RNA extraction from the larvae of *P. monodon* 116
4.2.3.3.3. cDNA synthesis ... 117
4.2.3.3.4. RT-PCR of *PmTERT* gene from *P. monodon* 117
4.2.3.3.5. Cloning and sequencing of *PmTERT* gene 118

4.3. Results ... 118

4.3.1. Detection of telomere terminal transferase activity (telomerase) in various tissues and lymphoid cell culture from *P. monodon* 118
4.3.2. Identification of canonical telomeric repeats added by the telomere terminal transferase activity (telomerase) of lymphoid tissue extract from *P. monodon* ... 119
4.3.3. Identification and cloning of *P. monodon TERT (PmTERT)* genes 120

4.4. Discussion .. 121
Chapter 5 Construction and evaluation of the versatile recombinant baculoviral vector systems with hybrid promoters designed for the expression of foreign gene in shrimp cells 133-173

5.1. Introduction ... 133

5.2. Materials and methods ... 138

5.2.1. Plasmid vectors used for the experiment, extraction and its purification ... 138

5.2.1.1. P2 complete Fluc pGL3 basic vector 139

5.2.1.2. pFastBac™ 1 transfer vector 140

5.2.1.3. pEGFP-N1 vector ... 140

5.2.1.4. Propagation of E. coli containing the plasmid vectors 141

5.2.1.5. Plasmid extraction .. 141

5.2.2. DH10Bac™ E. coli with baculovirus shuttle vector (Bacmid) and helper plasmid, pMON7124 142

5.2.2.1. Preparation of DH10Bac™ E. coli competent cells 143

5.2.3. Crustacean specific putative promoter from WSSV and IHHNV 143

5.2.3.1. Genomic DNA extraction from WSSV infected animal for Ie1 promoter ... 143

5.2.3.2. PCR amplification of Ie1 and P2 promoters 144

5.2.3.3. Cloning with pGEM-T Easy vector 145

5.2.3.4. Transformation into E. coli/DH5cx 145

5.2.3.5. PCR confirmation of gene insert in the selected clones 145

5.2.3.6. Propagation of confirmed colony and plasmid extraction 146

5.2.3.7. Restriction digestion of cloned pGEM-T vector with BamHI to release Ie1 and P2 promoters and its purification 146
5.2.4. Construction of the versatile recombinant baculoviral vector systems with hybrid promoters .. 147

5.2.4.1. Restriction digestion, CIP treatment and purification of pFASTBac™ 1 transfer vector ... 147

5.2.4.2. Insertion of crustacean specific viral promoters (Ie1 and P2) into pFASTBac™ 1 vector ... 148

5.2.4.3. Transformation of vectors with hybrid viral promoters into E. coli DH5α and its propagation; extraction and purification of the vector systems ... 148

5.2.5. Insertion of of green fluorescent protein (GFP) into the vectors for analysing transcriptional activity of hybrid viral promoter system 149

5.2.5.1. Gene encoding green fluorescent protein (GFP) and its purification.. 149

5.2.5.2. Insertion of of green fluorescent protein (GFP) downstream to hybrid viral promoter and its purification. ... 149

5.2.6. Generation of recombinant virus containing hybrid viral promoters and GFP ... 151

5.2.6.1. Transformation of pBacIel-GFP and pBacP2-GFP transfer vectors containing hybrid promoter system into DH10Bac™ E. coli. 152

5.2.6.2. Propagation of recombinant bacmid DNA in DH10Bac E. coli........ 152

5.2.6.3. Isolation of recombinant bacmid DNA from DH10Bac E.coli........ 152

5.2.6.4. PCR confirmation of insert orientation in bacmid DNA.................. 154

5.2.6.5. Transfection of recombinant bacmid shuttle vector into Sf9 cells to generate recombinant baculovirus ... 154

5.2.6.6. Isolation, amplification and storage of recombinant baculovirus containing hybrid viral promoters ... 155
Chapter 5 Transfection and transduction mediated oncogene expression in lymphoid cell cultures from Penaeus monodon for its in vitro transformation

5.2.7. Analysis of hybrid viral promoters mediated transcriptional activity in Sf9 cells .. 155

5.2.7.1. Analysis of GFP signals from transduced Sf9 cells 156

5.2.7.2. Analysis of hybrid promoter mediated protein expression in transduced Sf9 cells .. 156

5.2.8. Transduction of shrimp cells in vitro and in vivo with recombinant baculovirus encoding GFP under the control of hybrid viral promoters 157

5.2.8.1. Transduction of shrimp cells in vitro .. 157

5.2.8.1. Transduction of shrimp cells in vivo .. 158

5.3. Results .. 158

5.3.1. Construction of the versatile vector systems with hybrid viral promoters ... 158

5.3.2. Transduction of cell lines in vitro and evaluation of transcriptional activity of hybrid viral promoters in Sf9 cells .. 159

5.3.3. Transduction of shrimp cells in vivo and in vitro, and evaluation of transcriptional activity of hybrid viral promoters ... 160

5.4. Discussion .. 161

Chapter 6 Transfection and transduction mediated oncogene expression in lymphoid cell cultures from Penaeus monodon for its in vitro transformation ... 175-207

6.1. Introduction .. 175

6.2. Materials and methods .. 178

6.2.1. Cells and cell culture ... 178

6.2.2. Oncogene(s) and vectors used for the experiment 178

6.2.2.1. pSV3-neo vector encoding simian virus 40-T (SV40-T) oncogene 179
6.2.2.2. pWZL hygro 12S E1A viral vector encoding adenoviral 12S E1A oncogene ... 179

6.2.2.3. pBacP2 transfer vector with PH-P2 hybrid promoter 180

6.2.2.4. Green fluorescent protein encoding pEGFP-C1 and pEGFP-N1 vector .. 181

6.2.3. Propagation of *E. coli* containing the plasmid vectors pSV3-neo, pWZL hygro 12S E1A, pBacP2, pEGFP-C1 and pEGFP-N1 and plasmid extraction. 181

6.2.4. Transfection mediated SV40-T oncogene expression in lymphoid cell culture and analysis of post transfected cells .. 182

6.2.4.1. Electroporation of lymphoid cell culture with pSV3-neo vector encoding SV40-T oncogene ... 182

6.2.4.2. Lipofection of lymphoid cell culture with pSV3-neo vector encoding SV40-T oncogene ... 183

6.2.4.3. Analysis of lymphoid cells transfected with pSV3-neo vector encoding SV40-T oncogene ... 184

6.2.5. Recombinant baculovirus BacP2-12S E1A-GFP mediated transduction and expression of 12S E1A oncogene into lymphoid cells and its confirmation...... 185

6.2.5.1. Construction of transfer vector encoding 12S E1A tagged with GFP for generating recombinant baculovirus .. 185

6.2.5.1.1. Green fluorescent protein (GFP) tagging of 12S E1A oncogene .. 185

 6.2.5.1.1.1. Restriction digestion of pEGFP-N1 vector encoding GFP with Bam H I and its purification...... 185

 6.2.5.1.1.2. Restriction digestion of pWZL hygro 12S E1A vector with Bam H I to release 12S E1A oncogene and its purification 186
6.2.5.1.3. Ligation of 12S E1A oncogene into pEGFP-N1 vector, transformation into E.coli DH5α and plasmid extraction .. 187
6.2.5.1.4. Restriction digestion and release of GFP tagged 12S E1A oncogene (12S E1A-GFP), and its purification .. 187
6.2.5.1.2. Construction of pBacP2-12SE1A-GFP transfer vector encoding GFP tagged 12S E1A oncogene, extraction and purification 188
6.2.5.1.2.1 Restriction digestion pBacP2 transfer vector, and its purification ... 188
6.2.5.1.2.2. Ligation of GFP tagged 12S E1A into pBacP2 transfer vector and its purification 188
6.2.5.2. Generation of recombinant bacmid shuttle vector 189
6.2.5.2.1. Transfection of pBacP2-12SE1A-GFP into DH10Bac™ E.coli to produce recombinant bacmid shuttle vector 189
6.2.5.2.1.1. Propagation, isolation and PCR confirmation of recombinant bacmid .. 189
6.2.5.3. Generation of recombinant baculovirus expressing GFP tagged 12S E1A oncogene under the control of PH-P2 hybrid promoter 191
6.2.5.3.1. Transfection of recombinant bacmid containing PH-P2-12S E1A-GFP expression cassettes into Sf9 cells............................. 191
6.2.5.3.2. Isolation, amplification and storage of recombinant baculovirus containing GFP tagged 12S E1A oncogene 191
6.2.5.4. Analysis of oncogenic 12S E1A induced protein expression in Sf9 cells .. 192
6.2.5.5. Transduction of lymphoid cells with recombinant baculovirus encoding 12S E1A oncogene.. 193
6.2.5.6. Analysis of lymphoid cells transduced with recombinant baculovirus encoding 12S E1A oncogene .. 193

6.3. Results .. 194

6.3.1. Transfection mediated oncogenic SV40-T expression in lymphoid cell culture from P. monodon ... 194

6.3.2. Construction of recombinant baculovirus expressing GFP tagged 12S E1A and its expression in insect cells ... 195

6.3.3. Transduction mediated oncogenic adenoviral 12S E1A expression in lymphoid cell culture from P. monodon ... 196

6.4. Discussion .. 196

Chapter 7 Conclusion and scope for future research .. 209-215

References ... 217-248

Appendix .. 249-274