CONTENTS

a. Dedication i
b. Declaration by Researcher ii
c. Certificate from the Research Supervisor. iii
d. Acknowledgement iv
e. List of Tables v-vii
f. List of Figures viii-xii
g. Contents xiii-xiv

1 CHAPTER 1: Introduction 1-9
1.0 Introduction: 1
1.1 Acridinecarboxamide, A Class of Anticancer Drug 1
1.2 Description of DNA-Drug Binding 1
1.3 Azaacridinecarboxamide, A New Anticancer Agent 2
1.4 Importance of Drug pKₐ 3
1.5 Objective of Study 5
References 8

2 CHAPTER 2: Methodology 10-16
2.1 Introduction 10
2.2 Electron Correlation 11
2.3 Basis Set 12
2.4 Density Functional Theory (DFT) 13
2.5 JoinMolecules Package 14
2.6 Comparison of HF/6-31G, HF/6-31G*, HF/6-31G**, DFT and MP2 15
References 16

3 CHAPTER 3: Ab initio Calculations on the Stacking of 9-aminoacridine with Nucleobases and Watson-Crick Base Pairs. 17-31
3.1 Introduction 17
3.2 Methodology 18
3.3 Results and Discussions 19
3.4 Conclusion 22
References 31

4. CHAPTER 4: Ab initio Study of the Nature of Stacking between aza Analogues of Acridine-4-carboxamides with Sequences of DNA. 32-51
4.1 Introduction 32
4.2 Methodology 33
4.2.1 Models of stacked structures 33
4.2.2 Calculation of Stacking Interaction 34
4.3 Results and discussion 34
4.4 Conclusion 37
References 51
5. CHAPTER 5: Evaluation of Efficient Stacking of Aromatic Rings in the Intercalation Between Aza-analouges of Acridine-4-carboxamides and Base Pairs of DNA. 52-75
 5.1 Introduction 52
 5.2 Methodology 53
 5.3 Results and Discussion 54
 5.3.1 Contribution of \pi-\pi interaction in chromophore and base pair stacking: 54
 5.3.2 Contribution of \pi- group interaction and p-s interaction: 55
 5.4 Conclusion 58
 References 74

6. CHAPTER 6: Evaluation of Stacking Interaction by Chromophore of 9-anilinoacridine with Sequences of DNA. 76-84
 6.1 Introduction 76
 6.2 Methodology 77
 6.3 Results and Discussion 77
 6.4 Conclusion 79
 References 84

7. CHAPTER 7: Intercalation model of drug between sequences of DNA 85-94
 7.1 Introduction 85
 7.2 Methodology 86
 7.3 Results and discussion 86
 7.4 Conclusion 87
 References 94

8. CHAPTER 8: Prediction of pK_s From Basicity of Atomic Sites of Drugs 95-109
 8.1 Introduction 95
 8.2 Theory 97
 8.3 Results and Discussion 98
 8.3.1 Sites of protonation 98
 8.3.2 Geometries of protonated drugs 99
 8.3.3 Estimation of pK_s 99
 8.3.4 Complementarity of pK_s values of drugs with physiological environment 100
 8.4 Conclusion 101
 References 109

 9.1 Introduction 110
 9.2 Methodology 111
 9.3 Results and Discussion 111
 9.4 Conclusion 112
 References 117

10. Chapter 10: Conclusion 118-120

Appendix 1: List of Publications A
Appendix 2: Conversion factors B