CONTENTS

Declaration iii
Certificate iv
Acknowledgements v
Abstract vii
Publications xi

CHAPTER 1: INTRODUCTION

1.1. Introduction 1
1.2. Direct current discharges 5
1.3. Magnetron discharge plasma 9
 1.3.1. Cylindrical magnetron 11
 1.3.2. Planar magnetron 13
1.4. Plasma sheath 14
1.5. Surface modification by glow discharge plasma 14
 1.5.1. Plasma assisted physical vapour deposition (PAPVD) 15
 1.5.2. Plasma enhanced chemical vapour deposition (PECVD) 16
 1.5.3. Ion implantation and surface hardening 17
 1.5.4. Plasma polymerization 18
 1.5.5. Plasma Etching 19
1.6. Review of studies on:
 1.6.1. Magnetron discharge plasma 20
 1.6.2. Plasma sheath in magnetron systems 25

xiii
1.7. Review of works done on thin film deposition by reactive magnetron sputtering 27

1.8. Objectives of the Thesis 31

1.9. Contents of the thesis 33

CHAPTER 2: EXPERIMENTAL SETUP AND DIAGNOSTICS

2.1. Introduction 36

2.2. Cylindrical magnetron plasma system 36

2.3. Cylindrical magnetron discharge and magnetic field power supply 43

2.4. Diagnostics 45

2.4.1. Langmuir probe 45

The electron saturation current 48

The ion saturation current 49

Floating potential 49

The electron temperature 49

Electron distribution function 50

2.4.2. Emissive probe 52

Floating potential method 54

2.4.3. Mach probe 55

2.4.4. Optical emission spectroscopy 57

2.4.5. Film characterization 59

2.4.5.1. X-ray diffraction (XRD) 60

2.4.5.2. Scanning electron microscopy (SEM) 60

2.4.5.3. Energy dispersive X-ray analysis (EDX) 62

2.4.5.4. Atomic force microscopy (AFM) 62

xiv
CHAPTER 3: REACTIVE DISCHARGE STUDY IN DIRECT CURRENT CYLINDRICAL MAGNETRON PLASMA

3.1. Introduction 66
3.2. Experimental Setup and Diagnostics 70
3.3. Experimental results and discussion 74
 3.3.1. Discharge current – voltage characteristics 74
 3.3.2. Magnetic field effect on discharge characteristics 76
 3.3.3. Dependence of plasma parameters on discharge parameters 78
 3.3.3.1. Plasma density 78
 3.3.3.2. Electron energy distribution function (EEDF) 81
 3.3.3.3. Electron temperature 84
 3.3.3.4. Floating potential 88
 3.3.4. Optical emission spectroscopic study of the discharge 90
 3.3.5. Plasma potential profile and sheath parameter 94
 3.3.6. Optimum condition for high rate titanium nitride formation 96
3.4. Conclusion 98

CHAPTER 4: STUDY OF E x B DRIFT OF ELECTRONS AND SHEATH BEHAVIOUR IN DC MAGNETRON PLASMA

4.1. Introduction 100
4.2. Experimental set up 104
4.3. Experimental results and discussions 106
 4.3.1. Magnetic field distribution 106
 4.3.2. Current – voltage characteristics of the Mach probe 108
4.3.2.1. I_e at different discharge voltages and currents 109
4.3.2.2. I_e at different argon partial pressures 110
4.3.2.3. I_e at different applied magnetic field strengths 111
4.3.3. Measurement of electron temperature (T_e) 112
 4.3.3.1. T_e at different discharge voltages 113
 4.3.3.2. T_e at different argon partial pressures 114
 4.3.3.3. T_e at different applied magnetic field strengths 115
4.3.4. Measurement of electron $E\times B$ drift velocity 116
4.3.5. Plasma sheath variation study 123
4.4. Conclusion 126

CHAPTER 5: DEPOSITION AND CHARACTERIZATION STUDY OF TITANIUM NITRIDE FILMS AS PROTECTIVE AND DECORATIVE COATING ON BELL-METAL

5.1. Introduction 128
5.2. Experimental setup 132
5.3. Experimental results and discussion 135
 5.3.1. Variation of deposition rates of TiN coatings at different Ar:N$_2$ partial pressure ratios 135
 5.3.2. Lattice structure and crystallite dimension of TiN coatings 138
 5.3.3. Surface morphology of TiN coatings by SEM and AFM 140
 5.3.4. Adhesion property of the deposited TiN coatings 144
 5.3.5. Mechanical properties of the TiN coatings 145
 5.3.6. Corrosion study of the TiN coatings 148
 5.3.7. Colour variation study of the TiN coatings 149
5.4. Conclusion 151