LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow sheet of the pulp and paper mill.</td>
<td>30</td>
</tr>
<tr>
<td>1.2</td>
<td>Various types of solid wastes generated in pulp and paper mill.</td>
<td>31</td>
</tr>
<tr>
<td>1.3</td>
<td>Flow sheet of the causticizing Unit.</td>
<td>35</td>
</tr>
<tr>
<td>1.4</td>
<td>Effluent stream generated by the pulp and paper mill effluent.</td>
<td>41</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic diagram of effluent treatment plant.</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) Germination percentage of mustard, pea and rice under different percentages of sludge mixed soil in pot experiment.</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>(b) Shoot length (cm) of mustard, pea and rice under different percentages of sludge mixed soil.</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>(c) Root length (cm) of mustard, pea and rice under different percentages of sludge mixed soil.</td>
<td>101</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Germination percentage of mustard, pea and rice under different concentrations of paper mill effluent in pot experiment.</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>(b) Shoot length (cm) of mustard, pea and rice under different concentrations of paper mill effluent.</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(c) Root length (cm) of mustard, pea and rice under different concentrations of paper mill effluent.</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Germination percentage of mustard, pea and rice under different concentrations of paper mill effluent in Petri dish experiment.</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>(b) Shoot length (cm) of mustard, pea and rice under different concentrations of paper mill effluent.</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>(c) Root length (cm) of mustard, pea and rice under different concentrations of paper mill effluent.</td>
<td>115</td>
</tr>
<tr>
<td>3.4</td>
<td>(a) Average plant height of mustard, pea and rice under different percentages of lime sludge treatment</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>(b) Average plant height of mustard, pea and rice under different percentages of lime sludge and NPK treatment</td>
<td>123</td>
</tr>
<tr>
<td>3.5</td>
<td>(a) Average Pods / panicles number of mustard, pea and rice under different percentages of lime sludge.</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>(b) Average Pods / Panicles number of mustard, pea and rice under different percentages of lime sludge and NPK treatment.</td>
<td>126</td>
</tr>
</tbody>
</table>
3.6. (a) Average seeds number of mustard, pea and rice under different percentages of lime sludge treatment.
(b) Average seeds number of mustard, pea and rice under different percentages of lime sludge with NPK treatment.
3.7. (a) Average seeds weight of mustard, pea and rice under different percentages of lime sludge treatment.
(b) Average seeds weight of mustard, pea and rice under different concentrations of lime sludge and NPK treatment.
3.8. Average plant height of mustard, pea and rice under different concentrations of paper mill effluent.
3.9 Average Pods / Panicles number of mustard, pea and rice under different concentrations of paper mill effluent.
3.10. Average seed numbers of mustard, pea and rice under different concentrations of paper mill effluent.
3.11. Average seed weight of mustard, pea and rice under different concentrations of paper mill effluent.
3.12. (a) Variation of pH value for different percentages of sludge mixed soil at the beginning of sowing/plantation and after crop harvest.
(b) Variation of pH value for different concentrations of effluent treated soil at the beginning of sowing/plantation and after crop harvest.
3.13. (a) Variation of electrical conductivity values for different percentages of sludge mixed soil at the beginning of sowing/plantation and after crop harvest.
(b) Variation of electrical conductivity values for different concentrations of effluent treated soil at the beginning of sowing/plantation and after crop harvest.
3.14. (a) Variation of water holding capacity values for different percentages of sludge mixed soil at the beginning of sowing/plantation and after crop harvest.
(b) Variation of water holding capacity values for different concentrations of effluent treated soil at the beginning of sowing/plantation and after crop harvest.
3.15. (a) Variation of organic carbon values for different percentages of sludge mixed soil at the beginning of sowing/plantation and after crop harvest.

vii
(b) Variation of organic carbon values for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 173

3.16. (a) Variation of total nitrogen values for different percentages sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 176
(b) Variation of total nitrogen values for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 178

3.17 (a) Variation of available phosphorous value for different percentages of sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 181
(b) Variation of available phosphorous values for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 182

3.18 (a) Variation of exchangeable potassium values for different percentages of sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 185
(b) Variation of exchangeable potassium values for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 187

3.19. (a) Variation of exchangeable sodium values for different percentages of sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 189
(b) Variation of exchangeable sodium values for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 191

3.20. (a) Variation of exchangeable calcium for different percentages of sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 193
(b) Variation of exchangeable calcium for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 195

3.21. (a) Variation of exchangeable magnesium for different percentages of sludge mixed soil at the beginning of sowing / plantation and after crop harvest. 197
(b) Variation of exchangeable magnesium for different concentrations of effluent treated soil at the beginning of sowing / plantation and after crop harvest. 199
3.22. Change of pH before sowing and after crop harvest
3.23. Change of electrical conductivity before sowing and after crop harvest
3.24. Change of water holding capacity before sowing and after crop harvest.
3.25. Change of organic carbon before sowing and after crop harvest.
3.27. Change of available phosphorous before sowing and after crop harvest
3.28. Change of exchangeable potassium before sowing and after crop harvest
3.29. Change of exchangeable sodium before sowing and after crop harvest
3.30. Change of exchangeable calcium before sowing and after crop harvest.
3.31. Change of exchangeable magnesium before sowing and after crop harvest
3.32. Change of lead content before sowing and after crop harvest
3.33. Change of manganese content before sowing and after crop harvest
3.34. Change of nickel content before sowing and after crop harvest
3.35. Change of copper content before sowing and after crop harvest
3.36. Change of zinc content before sowing and after crop harvest
3.37. Average height gained by mustard plant treated with lime sludge and lime sludge and lime sludge with NPK after harvesting.
3.38. Average seed weight (g) shown by the mustard crop treated with lime sludge and lime sludge with NPK treatment after harvesting.
3.39. Lead content of (1) different percentages of sludge mixed soil and (2) different concentrations of effluent treated soil after the crop harvest.
3.40. Manganese content of (1) different percentages of sludge mixed soil and (2) different concentrations of effluent treated soil after the crop harvest.
3.41. Nickel content of (1) different percentages of sludge mixed soil and (2) different concentrations of effluent treated soil after crop harvest.
3.42. Copper content of (1) different percentages of sludge mixed soil and (2) different concentrations of effluent treated soil after crop harvest.
3.43. Zinc content of (1) different percentages of sludge mixed soil and (2) different concentrations of effluent treated soil after crop harvest.