TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter I</th>
<th>General Introduction</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[1-62]</td>
</tr>
</tbody>
</table>

- 1.1 Introduction 1
- 1.2 Historical aspects 3
- 1.3 Basic terminology 6
- 1.4 The anatomy of queueing system [10-34]
 - 1.4.1 Description of various models and their notations 11
 - 1.4.2 Various queueing processes under study 14
 - 1.4.3 Methodology 15
 - 1.4.4 Some useful techniques 25
- 1.5 Various types of queueing models 34
- 1.6 Miscellaneous topic 48
- 1.7 Some general criteria 53

Abstract of the thesis [i - v]
PART- I

QUEUEING SYSTEM WITH TWO PHASES OF HETEROGENEOUS SERVICE

Chapter II A Poisson input queue with two phases of heterogeneous service [63 – 81]

2.1 Introduction 63
2.2 The system 64
2.3 Queue size distribution at departure epoch 65
2.4 Queue size distribution due to Busy period of the server 69
2.5 Busy period distribution 73
2.6 Waiting time distribution 74
2.7 Recursive solution of the departure point queue size distribution 76
2.8 A simple numerical illustration 77
2.9 Concluding remark 80
Chapter III Bernoulli feedback queueing system
for a two phases of heterogeneous service [82 – 105]

3.1 Introduction 82
3.2 The model description 84
3.3 Queue size distribution at stationary point of time 85
3.4 Queue size distribution at service completion epoch 90
3.5 Response time distribution 94
3.6 Inter departure time distribution 96
3.7 Busy period distribution 97
3.8 Numerical illustration 98
3.9 Conclusion 105

Chapter IV A batch arrival queueing system with two phases of heterogeneous service under N-Policy [106 – 140]

4.1 Introduction 106
4.2 The model description 108
4.3 Queue size distribution at random epoch 110
4.4 Analysis of the queue without N-policy 116
4.5 Analysis of the model under N-policy 120
4.6 Queue size distribution at a departure epoch 124
4.7 The extension o the existing model 126
PART – II

QUEUEING SYSTEM WITH BERNOULLI VACATION SCHEDULE

Chapter V

A Poisson input queue with two phases of heterogeneous service and Bernoulli vacation schedule under multiple vacation policy [141 – 162]

5.1 Introduction 141
5.2 The mathematical model 143
5.3 Queue size distribution at a departure epoch 144
5.4 Stationary queue size distribution at a random epoch 148
5.5 Busy period distribution 152
5.6 Waiting time distribution 153
5.7 Distribution of unfinished work 155
5.8 Statistical Analysis of the model 157
Chapter VI A batch arrival queueing system with two phases of service and Bernoulli vacation schedule under multiple vacation policy

6.1 Introduction 163
6.2 The mathematical model 167
6.3 Queue size distribution at busy period initiation epoch 168
6.4 Queue size distribution due to idle period process 170
6.5 Queue size distribution at a departure epoch 171
6.6 Mean queue size 174
6.7 Departure point queue size distribution for single vacation model 175
6.8 Stationary queue size distribution at a random epoch 178
6.9 Busy period distribution 183
6.10 Waiting time distribution 184
6.11 Distribution of unfinished work 186
6.12 Effect of employing Bernoulli schedule 188
Chapter VII A batch arrival queueing system with a random setup
time under Bernoulli vacation schedule [192 – 218]

7.1 Introduction 192
7.2 The mathematical model 194
7.3 Queue size distribution at busy period
 initiation epoch 195
7.4 Queue size distribution due to idle
 period process 197
7.5 Queue size distribution at a departure epoch 202
7.6 Stationary queue size distribution
 at random epoch 207
7.7 Distribution of busy period process 213
7.8 Waiting time distribution 214
7.9 Distribution of unfinished work 217

Bibliography [219 – 240]