# CONTENTS

## CHAPTER 1  INTRODUCTION  
: 1-65

1.1  Zeolites: A Brief Idea.  
: 1

1.2  Structure of Zeolites  
: 2

1.3  Properties of Zeolites  
: 6

1.3.1  Physical Properties  
: 9

1.3.2  Chemical Properties  
: 9

1.3.3  Stability of Zeolites  
: 11

1.3.4  Shape Selectivity in Zeolites  
: 13

1.3.5  Deactivation of Zeolites  
: 14

1.4  Application of Zeolites  
: 15

1.4.1  Catalysis  
: 17

1.4.2  Adsorption  
: 18

1.4.3  Ion-exchange  
: 18

1.4.4  Other Applications  
: 20

1.5  Classification of Zeolites  
: 22

1.5.1  Classification based on Chemical Composition  
: 22

1.5.2  Classification based on Pore Opening  
: 22

1.5.3  Other Classifications  
: 22

1.6  Synthesis of Zeolites  
: 23

1.6.1  Alkalinity of the Gel  
: 25

1.6.2  SiO₂/Al₂O₃ Gel Molar Ratio  
: 26

1.6.3  Presence of Organic Template  
: 26

1.6.4  Presence of Inorganic Cation  
: 26

1.6.5  Effect of Water Content  
: 27
1.6.6 Effect of Promoters : 27
1.6.7 Effect of Source of Raw Materials : 27
1.6.8 Temperature : 27
1.6.9 Synthesis Time : 28

1.7. Modification of Zeolites : 28
1.7.1 Modification by Direct Synthesis. : 29
1.7.2 Post Synthesis Modifications : 31
  1.7.2.1 Ion-exchange. : 32
  1.7.2.2 Metal Loading : 32
  1.7.2.3 Modification into High Silica Zeolites : 33
    (A) Hydrothermal Modifications : 33
    (B) Chemical Modifications : 34

1.8 Characterization of Zeolites : 36
1.8.1 X-Ray Diffraction Analysis. : 36
1.8.2. Ion-exchange : 37
1.8.3 Infra-Red Spectroscopy : 37
1.8.4. Scanning Electron Microscopy : 38
1.8.5. Nitrogen Adsorption Measurement : 38
1.8.6 Acidity Measurement. : 39
1.8.7. Thermal Analysis : 39
1.8.8 Nuclear Magnetic Resonance Spectroscopy : 40

1.9. Description of Zeolites used in the Present Investigations : 41
  1.9.1 Zeolite Mordenite : 41
  1.9.2. Zeolite Y : 42
  1.9.3. Zeolite Beta. : 44
CHAPTER 2
SYNTHESIS OF ZEOLITES AND THEIR CHARACTERIZATION


2.1.1 Synthesis of Zeolite Y

2.1.2 Synthesis of Mordenite

2.1.3 Synthesis of Zeolite Beta

2.1.4 Synthesis of Zeolite MCM-22

2.1.5 Post Synthesis Modification of Zeolites -Y, Mordenite and Beta

2.1.5.1 Conversion to NH₄ forms and then to Hydrogen forms

2.1.5.2 Dealumination of Zeolites -Y, Mordenite and Beta

2.2 Physical Characterization of Zeolites

2.2.1 Silicon to Aluminium Ratio

2.2.2 X-ray Diffraction

2.2.3 Infra-red Spectroscopy

2.2.4 Scanning Electron Microscopy

2.2.5 Nitrogen Adsorption Measurement

2.3 Conclusion

2.4 References

CHAPTER 3
ACYLATION OF ANISOLE USING PARENT AND DEALUMINATED ZEOLITES

3.1 Acylation of Aromatic Compounds

3.2 Effect of Reaction Time on Acylation Reaction using Parent and Dealuminated Zeolites.
3.2.1 Effect of Reaction Time for Zeolite Y : 100
3.2.2 Effect of Reaction Time for Zeolite Mordenite : 116
3.2.3 Effect of Reaction Time for Zeolite Beta : 127
3.3 Effect of Temperature : 136
3.4 Effect of Dealumination : 136
3.5 Comparison of Parent Samples : 144
3.6 Comparison of Dealuminated Zeolites : 149
3.7 Reaction Scheme : 150
3.8 Conclusion : 152
3.9 References : 154

CHAPTER 4 PHENOL ACYLATION WITH MCM-22 ZEOLITE

4.1 Introduction : 157
4.2 Catalytic Reaction : 159
4.3 Result and Discussion : 159
   4.3.1 Effect of Temperature : 160
   4.3.2 Effect of Reaction Time : 164
   4.3.3 Effect of Molar Ratio of the Reactants : 166
   4.3.4 Effect of Silica-alumina Molar Ratio : 168
   4.3.5 Effect of Catalyst Weight : 169
   4.3.6 Comparison of the Acylating Agents : 170
4.4 Reaction Scheme : 173
4.5 Conclusion : 175
4.6 References : 177

SUMMARY : 179

LIST OF PUBLICATION : 183