CONCLUSION

Although the chemical analysis indicated that the silkworm pupae meal and deoiled silkworm pupae meal were a good source of essential nutrients, the biological experiment revealed that the nutritive value of these was on par with that of soyabean meal, except in calcium level. The protein, aminoacid and fatty acid composition of silkworm pupae meal was very superior when compared with soybean meal. The growth performance parameters were very good with all levels of inclusion of full fat /deoiled silkworm pupae meal and were on par with that of the control diet. Similarly, in the carcass characteristics the dressing per centage was better when compared with control.

The relative organ weights, immunological parameters and organoleptic qualities remained unaffected by inclusion of silkworm pupae meal and these traits indicate that there was no deleterious effect upon inclusion of silkworm pupae meal at different levels in broilers. In Biochemical parameters there was increase in HDLP levels, and decrease in LDLP, serum cholesterol and meat cholesterol levels. It may be due chitin which has hypocholesterimic effect. Supplementation of enzyme protease to improve the nutritive value of silkworm pupae meal (full fat or deoiled) were also seems to be ineffective. Taking into account of parameters of economic importance, there were higher net returns in silkworm pupae supplemented diets when compared with soybean meal. This indicates that the scope for inclusion of silkworm pupae meal as an unconventional feed source in diets was on par with supplementation of soybean meal, and can be effectively substituted for soybean meal in broiler rations.