Immediate constituent analysis (IC's for short) is one of the largest functioning units in a Construction of a sentence. 'They are constituent in the sense that they constitute the sentence. They are immediate in the sense that they act immediately on one another. The whole meaning of the one applies to the whole meaning of the other'. The constituent have been organised in a particular order in the sentence.

The I C Postulated for Barpeta dialect discovers the grammatical group in favorite sentences. The analysis begins with larger units and end with the discovery of morphemes the smallest unit. The I.C'S of a sentence are a noun phrase and a verb phrase. These are the two parts of a sentence that apply their meaning directly to each other. The noun phrase of a sentence may consist of a demonstrative plus a noun. In this case the construction may be cut between the demonstrative and the noun. Such as,

/xitu Soli £th£he geise /
that boy now has gone

Xitu/Soli

The I.C's of this noun phrase are 'Xitu' and 'Soli'. The verb phrase of the sentence may be a verb plus an adverb. This phrase can be cut into IC's as follows -

\[\textbf{\textit{\text{ethene/geise}}\textbf{}}\]

According to Bloomfield a sentence is not a sequence or a string of elements; it is made up of layers of constituents. 'The best method of display is the use of a 'tree,' rather like that of a family tree where the 'branching' shows the divisions\(^1\). The tree diagram for the sentence mentioned above is --

\[
\begin{tikzpicture}
 \node (S) {S}
 child {node (NP) {NP}
 child {node (Dem) {Dem.}
 child {node (xitu) {xitu}}
 }
 child {node (N) {N.}
 child {node (soli) {soli}}
 }
 }
 child {node (VP) {VP}
 child {node (Adv) {Adv.}
 child {node (ethene) {ethene}}
 }
 child {node (V) {V}
 child {node (geise) {geise}}
 }
 }
\end{tikzpicture}
\]

We have seen how nouns can be expanded into noun phrase and verbs into verb phrase. If the subject and

\[\textit{1. Palmer, Frank: 'Grammar', P.127.}\]
Predicate of a basic pattern are so expanded, we might get something like this -

\[
\begin{array}{c}
\text{eta mada man\textit{\(e\)}} \quad \text{ramok} \quad \text{borke} \quad \text{masse} \\
\text{a fat man} \quad \text{Ram} \quad \text{severely has beaten} \\
\text{NP} \quad \text{VP} \\
S
\end{array}
\]

The phrase contains several internal relationships building together in complicated ways to the total meaning. We have seen these relationships by breaking the phrase into its immediate constituents layer by layer. The tree diagram for the above sentence is-

We can establish that '\text{eta mada man\textit{\(e\)}}' is an expansion of 'man\textit{\(e\)}', since 'man\textit{\(e\)}' can be substituted for
it. Similarly, we can establish 'ramok bôr ke masse' as an expansion of 'masse'. Then we may compare all of this with 'manhe masse'. Here the obvious ICs are into 'manhe' and 'masse'. 'The diagram brings out very clearly the hierarchical nature of IC analysis: the smallest elements combine to form larger ones and so on upwards'.

20.01. Limitations of IC analysis:

However, IC has certain limitations. 'It can show that a certain type of ambiguity, a difference of meaning is related to a difference in the hierarchical structure of the IC analysis'. Some of the limitations that found in the Barpeta dialect are illustrated by the following examples—

(i) In IC we donot get the difference between deep structure and surface structre. But what we get in SS may be different in DS as far as meaning is concerned. Hence IC analysis does not give us much information about the internal structure of the sentence; e.g.

/Solitu xuise/

the boy sleeping

N V

2. ibid: ibid, P.125
In surface structure these two sentences are syntactically identical, but in deep structure they are quite different. IC analysis would assign identical P-markers to the pair of sentences above. Such an analysis would fail to make it explicit that in the first sentence 'Solitu' is the logical subject whereas in the second sentence 'Solitu' is the logical object.

(ii) IC analysis fails to show the different meanings of ambiguous sentences. For example we may take the following sentence-

/thoga gidga apitu aifisil/
beautiful sang a song the girl Came

But we get two meanings in this sentence --

(i) /apitu aifisil zitui thoga gid gaisil/'The girl came who sang a beautiful song.

(ii) /gidga thoga apitu aifisil/The beautiful girl came who sang a song.

(iii) I C analysis believe too much in the mechanism
construction of a sentence. It has got to accept any sentence which is grammatically correct, Such as --

```
/ata gel/
\(\text{(my) grand father} \ \text{dead}\)
N \ V
```

```
/ata gel/
\(\text{(my) grand father} \ \text{Went}\)
N \ V
```

In the sentences above the same structures give us two different meanings. In the first sentence the verb 'gel' means died whereas in the second sentence the verb 'gel' occurs in the sense of 'went'. But IC analysis fails to show it.

21.00 Phrase structure grammar

The Phrase structure grammar of N. Chomsky shows the structure of a kernel sentence. According to him Kernel is an 'active, declarative and simple'1 sentence. A kernel sentence consists of a noun phrase followed by a verb phrase. 'The representation of the Phrase structure of a sentence is known as its PHRASE MARKER or P. MARKER for short.'2. The term P. marker referred to a labeled tree, also known as labeled (branching) tree diagram, or simply as a

2. ibid : ibid P.127.
derivational tree. The Points which are joined by the branches are Called NODES. The phrase structure of a sentence in the Barpeta dialect can be shown by a tree diagram, such as,

```
/moi  bhat  khaú/
   _____   _____
     I      rice eat
```

```
S
  /\   
 NP  VP
  /\    
 Pron Pred
  /\    
v-group
   /\--
   NP   V
      /\--
      N   v
      /   
     moi  bhat
```

Here, S dominates NP and VP i.e. S is higher than NP or VP. NP dominates pronoun. VP dominates Predicate and V-group. Predicate dominates NP, NP dominates noun. V-group dominates verb. Pronoun dominates 'moi', noun dominates 'bhat' and Verb dominates 'khaú'. S, NP, VP, pron, Pred.,
V-group, NP, N and v are the nodes of the tree. They are all constituents. The tree structure preserves the linear order of the constituents like IC analysis. The first NP precedes VP. Predicate precedes V-group. Precedence thus, like dominance is clearly shown in the above tree diagram.

The Phrase structure component given in 'Syntactic Structure' of Chomsky generates the structure which underlies a kernel sentence by means of rewrite rules. The following PS rules for the description of Assamese (Produced by Dr. Banamali Kakati) can be put forward for the Barpeta dialect also.

21.01. Ps rules:

1. $S \rightarrow NP \ VP$

2. $NP \rightarrow (\text{Dem}) \ N\{c1\}$
 \quad \{ Prop N \}
 \quad \{ Pron \}

3. $CI \rightarrow \{ \text{Def}(ge) \}$
 \quad \{ Num\ Def(ge) \}
 \quad \{ Num\ Contain \}
 \quad \{ Num\ meas \}

Explanation of terms:

- S: Sentence
- NP: Noun phrase
- VP: Verb phrase
- Dem: Demonstrative
- PropN: Proper Noun
- Pron: Pronoun
- N: Noun
- Cl: Classifier
- K: Case
- Def: Definitive
- ge: gender
We can derive the underlying strings of the kernel sentence/moj bhat khātu/'I eat rice' by framing following PS rules—

4. Num --> \{ Card
 \{ Ord
 \{ Ord Card \}

5. VP --> (Pred) V-group

6. Pred --> \{ NP \}
 \{ Aj
 \{ Adv \}

7. V-group --> V-stem(Aux) (M) C

8. Aux, M --> infinite

9. C --> Tns Pm

10. Tns --> T ASP

11. T --> \{ Pres
 \{ Past
 \{ Fut \}

12. ASP --> Perf

13. Pm --> \{ 1st
 \{ 2nd
 \{ 3rd \}

Num: Numeral
meas: measure
Card: Cardinal
Ord: Ordinal
Pred: Predicate
Aj: Adjective
Adv: Adverb
Aux: Auxiliary
M: Modal
C: Concord
T: Tense
ASP: Aspect

Pm: Person marker
Pres: Present
Fut: Future
Perf: Perfect
Nom: Nominative
Acc: Accusative
Adv-P: Adverb of place.
Adv-m: Adverb of manner.
<table>
<thead>
<tr>
<th>PS rules</th>
<th>Strings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow NP + VP$</td>
<td>$NP + VP$</td>
<td>(1st string)</td>
</tr>
<tr>
<td>2. $NP \rightarrow Pron.+K$</td>
<td>$Pron+K+VP$</td>
<td>(2nd ")</td>
</tr>
<tr>
<td>5. $Pred \rightarrow NP$</td>
<td>$Pron.+Nom.+NP+V-group$</td>
<td>(5th ")</td>
</tr>
<tr>
<td>9. $C \rightarrow Tns+Pm$</td>
<td>$Pron.+Nom.+N+Acc.+V-stem+Tns+Pm$</td>
<td>(9th ")</td>
</tr>
<tr>
<td>11. $Pm \rightarrow 1st Per.$</td>
<td>$moi + ø + bhat + ø + kha+Pres+1st Per(11th)$</td>
<td></td>
</tr>
</tbody>
</table>

The Psrules mentioned above generate the above strings for the sentence $moi bhat khañ/$. Each of the strings is a kernel string. The last string is called K-terminal string. K-terminal string is the last string of the derivation.

21.02. Phrase structure rules in tree diagram:

The following sentences of the Barpeta dialect are shown by using above PS rules in tree diagram --
/moi\ x'ylkante zam/
I soon shall go

Ps rules

1. \(S \rightarrow NP + VP \)
2. \(NP \rightarrow Pron. + K \)
3. \(K \rightarrow Nominative \)
4. \(VP \rightarrow Pred + V\.\text{group} \)
5. \(Pred \rightarrow Adv-m \)
6. \(V-.\text{group} \rightarrow V-.\text{stem} + C \)
7. \(C \rightarrow Tns Pm \)
8. \(Tns \rightarrow future \)
9. \(Pm \rightarrow 1st\ Person \)
using morphophonemic rule \rightarrow rame khuznatuk saul dise.

Ps rules

1. $S \rightarrow NP+VP$
2. $NP \rightarrow N+K$
4. $VP \rightarrow$ Pred+V-group
5. $\text{Pred} \rightarrow \text{NP}+\text{NP}$
6. $\text{NP} \rightarrow \text{N}+\text{CI}+\text{K}$
7. $\text{K} \rightarrow \text{Acc.}$
8. $\text{NP} \rightarrow \text{N}+\text{K}$
9. $\text{K} \rightarrow \text{Acc.}$
10. $\text{V} \rightarrow \text{group} - \text{V-stem}+\text{C}$
11. $\text{C} \rightarrow \text{Tns}+\text{Pm}$
12. $\text{Tns} \rightarrow \text{T}+\text{ASP}$
13. $\text{T} \rightarrow \text{Pres}$
14. $\text{T} \rightarrow \text{Perf}$
15. $\text{Pm} \rightarrow 3\text{rd per.}$

/ɛta/ tiri thoga solituk matsil/
A woman beautiful the boy called

S

NP

N Cl K Nom

Num Def Pred

v-group

VP

N Cl K

Tns Tns Fast

Pm Pm 3rd

tiri thoga solitu kmatil is \emptyset
using obligatory transformation \(N+\text{Num}+\text{Def} \rightarrow \text{Num}+\text{Def}+N \)

\[\text{V-Stem}+\text{T}+\text{ASP} \rightarrow \text{V-Stem}+\text{ASP}+\text{T} \]

\(\text{εkta tiri} \, \text{thoga solituk matisil} \)

using morphophonemic rules we get

\(\text{εta tiri thoga solituk matsil} \)

Ps rules

1. \(S \rightarrow \text{NP}+\text{VP} \)
2. \(\text{NP} \rightarrow \text{N}+\text{cl}+\text{K} \)
3. \(\text{cl} \rightarrow \text{Num}+\text{Def} \)
4. \(\text{K} \rightarrow \text{Nom.} \)
5. \(\text{VP} \rightarrow \text{Pred}+\text{V-group} \)
6. \(\text{Pred} \rightarrow \text{Aj}+\text{NP} \)
7. \(\text{NP} \rightarrow \text{N}+\text{cl}+\text{K} \)
8. \(\text{K} \rightarrow \text{Acc.} \)
9. \(\text{V-group} \rightarrow \text{V-Stem}+\text{c} \)
10. \(\text{C} \rightarrow \text{Tns}+\text{Pm} \)
11. \(\text{Tns} \rightarrow \text{T}+\text{ASP} \)
12. \(\text{T} \rightarrow \text{Past} \)
13. \(\text{Pm} \rightarrow \text{3rd Per.} \)