CHAPTER TITLE PAGE

ABSTRACT I – XII

1. INTRODUCTION 1

1.1 An overview of beta-lactam antibiotics and their processes 4

1.2 Methods for extraction and purification of beta-lactam antibiotics 4

1.2.1 Conventional methods 4

1.2.2 Emerging methods 9

1.3 Reactive extraction of beta-lactam antibiotics and reported studies 26

1.4 Aim of the present study 28

1.7 References 29

2. STUDIES ON EXTRACTION EQUILIBRIUM 32

2.1 Introduction 32

2.2 Theoretical considerations on extraction equilibra 32

2.2.1 Dissociation behaviour of beta-lactam antibiotics 33

2.2.2 Ion-pair extraction 35

2.2.3 Ion-exchange extraction 41

2.3 Experimental study 43

2.3.1 Chemicals and reagents 43

2.3.2 Preparation of buffer solutions 43

2.3.3 Estimation of beta-lactam anions 46

2.3.4 Estimation of chloride and buffer ions 46

2.3.5 Determination of distribution coefficient and equilibrium constant 52

2.3.6 Determination of beta-lactam stability 53

2.3.7 I R Spectroscopic study 53

2.4 Results and discussion 54

2.4.1 Effect of carrier type and loading 54

2.4.2 Effect of pH and carrier / solute concentration 76

2.4.3 Stoichiometric analysis of the Extraction equilibrium 105

2.4.4 I R Spectroscopic data 107
2.4.5 Effect of solvent and chemical nature of beta-lactam 125
2.4.6 Beta-lactam stability under reactive extraction condition 144

2.5 Conclusion 145
2.6 Nomenclature 148
2.7 Reference 150

3. STUDIES ON EXTRACTION KINETICS

3.1 INTRODUCTION 153
3.2 Theoretical aspect and kinetic models 153
3.2.1 Qualitative consideration 153
3.2.2 Two-film mass transfer model 158
3.2.3 Model with diffusion and interfacial reaction 161

3.3 Experimental Study 168
3.3.1 Chemical / reagents and analytical procedure 168
3.3.2 Kinetics experiments and data reduction 168
3.3.2.1 Methods available 168
3.3.2.2 Procedure of kinetics experiment 170
3.3.3 Determination of interfacial tension 173

3.4 Results and Discussion 175
3.4.1 Effect of stirring speed and interfacial area 176
3.4.2 Effect of pH and beta-lactam concentration 182
3.4.3 Effect of carrier concentration 189
3.4.4 Role of interfacial tension on extraction kinetics 192
3.4.5 Validation of kinetic model 203
3.4.5.1 Qualitative consideration 203
3.4.5.2 Two-film model 203
3.4.5.3 Model with diffusion and interfacial reaction 206

3.5 Conclusion 209
3.6 Nomenclature 216
3.7 References 219

4. STUDIES ON STRIPPING KINETICS

4.1 Introduction 221
4.2 Theoretical considerations and kinetics models 221
4.3 Experimental study 225
 4.3.1 Chemicals and reagents 225
 4.3.2 Procedure of kinetic experiments and data reduction 225
4.4 Results and Discussion 226
 4.4.1 Effect of stripping phase pH and chloride ion concentration 226
 4.4.2 Effect of solute-carrier complex/carrier concentration in organic phase 231
 4.4.3 Validation of kinetic model 231
4.5 Conclusion 234
4.6 Nomenclature 238
4.7 References 239

5. SAMPLE CALCULATION
 5.1 Chapter 2 240
 5.1.1 Distribution coefficient 240
 5.1.2 Percentage extraction 240
 5.1.3 Loading 241
 5.1.4 Equilibrium constant of extraction 241
 5.1.4.1 Experimental 241
 5.1.4.2 Theoretical 241
 5.1.5 Equilibrium constant of co-extraction 243
 5.1.6 Stoichiometric factor of complexation 243
 5.1.7 Hydrophobicity scale 244
 5.1.8 Relation of Hydrophobicity scale with K_p 244
 5.2 Chapter 3 244
 5.2.1 Initial extraction rate 244
 5.2.2 Interfacial tension data 245
 5.2.3 Langmuir adsorption parameters 247
 5.2.4 Parameters of kinetics model 247
5.2.4.1 Mass transfer model 247
5.2.4.2 Model with interfacial reaction 249

5 3 Chapter 3 249
5 3.1 Initial stripping rate 249
5.3.2 Percentage stripping 249
5.3.3 Parameters of kinetic model 249

6. RECOMMENDATION FOR FURTHER WORK 251

Appendix 1. Computer program for estimation of the stoichiometric factor in extraction equilibria 252

Appendix 2. Computer program for simulation the results of extraction kinetics 253
2.A Langmuir adsorption parameter 253
2.B Two-film mass transfer model 254
2.C Model with interfacial reaction 256

Appendix 3. Computer program for simulation of stripping kinetics data of mass transfer model 258

List of publications 260