List of Figures

Figure 1.1. Annual Deaths Due to Selected Infectious Diseases. 1
Figure 1.2. Major infectious diseases causes of child morality. 3
Figure 1.3. Scanning electron micrograph of S. pneumoniae (from CDC). 5
Figure 1.4. Biosynthetic pathway of Cell wall assembly, in which Peptido-
glycan synthesis mainly occur in cytoplasm, membrane and extracellular face of the cytoplasmic membrane. 7
Figure 1.5. Schematic representation of the pneumococcal peptidoglycan. the variable presence of branched stem peptides is indicated on the left. 7
Figure 1.6. Schematic representation of ribitol teichoic acid with repeating units of 1, 5-phosphodiester linkages of D-ribitol and D-alanyl ester on position 2 and glycosyl substituents (R) on position 4. 8
Figure 1.7. Worldwide major causes of death in children younger than age 5 years and in neonates (yearly average for the Period between (2000-2003). 9
Figure 1.8. Circular representation of the S. pneumoniae R6 genome map. 18
Figure 2.1. Protein structure models and its application depend on accuracy. 25
Figure 2.2. Flow chart for prediction of 3D structure proteins using homology modelling. 28
Figure 3.1. Typical motional timescales for physical processes. 34
Figure 3.2. Gromacs steps for performing MD simulations. 36
Figure 4.1. Steps involved in structure based drug design through in silico approach. 38
Figure 4.2. Targets of currently marketed small-molecule drugs, subdivided by biochemical class. 41
Figure 4.3. Growth of crystal structure proteins deposited in Protein data bank. 46
Figure 4.4. Potential areas for in silico intervention in drug discovery. 48
Figure 5.1. A drug molecule and its discretion.
Figure 5.2. Thermodynamic cycle for enzyme, inhibitor at various solvent parameters and change in free energy (ΔG) under vacuo and water conditions under E-I complex condition.
Figure 5.3. Drug molecule docked into the targeted protein inhibitor site and orientation of drug molecule.

Figure 6.1. Alanine racemase (EC: 5.1.1.1.), D-alanine-D-alanineligase (EC: 6.3.2.4) and D-alanine-D-alanyl carrier protein ligase (EC: 6.1.1.13) are involved in D-alanine metabolism and are linked to peptidoglycan synthesis.

Figure 7.1. Alignment file with target sequence and template.
Figure 8.1. Catalytic mechanism of Alanine racemase.
Figure 8.2. Amino acid sequence of Sp-AIr in FASTA format.
Figure 8.3. Sequence alignment of Sp-AIr model with crystal structure alanine racemase (1SFT) based on sequence homology with clastalW algorithm.

Figure 8.4. Phylogenetic tree based on the multiple sequence alignment of Sp-AIr with Alanine racemase from B. stearothermophilus (1SFT), B. subtilis (2SFP), G. Stearothermophilus (1EPV), G. stearothermophilus (1XQK), B. anthracis (3HAI, 2VD9 and 2VD8), O.oenipsu-1 (3HUR and 3CO8), B. henselae(3KW3), P. aeruginosa (1RCQ and 2ODO), E. coli (3B8W,3B8V,3B8U, 2RJG and 3B8T) M. tuberculosis (1XFO) and S. lavendulae (1VFH).

Figure 8.5. The 3D model of Sp-AIr.
Figure 8.6. The Homology model of Sp-AIr.
Figure 8.7. A) Total energy of Sp-AIr.
B) RMSD of Sp-AIr.
C) Total protein RMSF of Sp-AIr.
D) C-alpha chain of protein RMSF of Sp-AIr.
E) Backbone of protein RMSF of Sp-AIr.
F) Main chain of protein RMSF of Sp-AIr.
G) Side chain of protein RMSF of Sp-Alr.

Figure 8.8. Ramachandran plot for Sp-Alr model produced by PROCHECK.

Figure 8.9. Main chain parameters of Sp-Alr model generated by PROCHECK.

Figure 8.10. Side chain parameters of Sp-Alr model generated by PROCHECK.

Figure 8.11. ProSA-web Z-scores and energy of 1SFT (A and B) and Sp-Alr model (C and D).

Figure 8.12. Involvement of amino acids in different secondary structural conformation of Sp-Alr model, analyzed with PDBsum.

Figure 8.13. Domain structure of Sp-Alr model (MotifScan and Pfam graphical output).
 a) The Sp-Alr domain model represented schematically as green colored N-terminal domain with predicted active site and red colored C-terminal domain.
 b) A plot of the predicted surface accessibility at each residue.
 c) The 3D model of Sp-Alr with N-terminal and C-terminal ends.

Figure 8.14. The active site analysis of Sp-Alr model.

Figure 8.15. Superposition of 1SFT with Sp-Alr model.

Figure 8.16. Different views of active site amino acids of Sp-Alr model.

Figure 8.17. The ion pairs and salt bridges of Sp-Alr model determined from Jmol first glance online server.

Figure 8.18. A - Chemical structures of DLM 1 to DLM 3.
 B - Chemical structures of DLM 4 to DLM 6.
 C - Chemical structures of DLM 7 to DLM 9.
 D - Chemical structures of DLM 10 to DLM 12.
 E - Chemical structures of DLM 13 to DLM 15.
 F - Chemical structures of DLM 16 to DLM 18.
 G - Chemical structures of DLM 19 to DLM 21.
 H - Chemical structures of DLM 22 to DLM 24.
Figure 8.19. Binding domain showing electrostatic potential surface of Sp-Alr model (blue +ve and red -ve charge) with interactions of DLM ligands.

Figure 8.20. Binding interactions of DLM ligands with active site amino acids of catalytic domain of Sp-Alr model.

Figure 8.21. Interactions of the DLM 1 ligand at Sp-Alr model active site domain with Lys47, Arg143, His172, Ser210, Arg225, Gly227 and Tyr359.

Figure 8.22. Interaction of natural substrate L-alanine at Sp-Alr model active site domain (red circle is zoomed right side) with Asp138, Ser139, Arg143, Met141 and His172.

Figure 8.23. Interaction of inhibitor D-cycloserine at Sp-Alr model active site domain (red circle is zoomed right side) with Arg143 and His172.

Figure 9.1. Catalytic mechanism of D-alanine: D-alanine ligase.

Figure 9.2. Amino acid sequence of Sp-Ddl in FASTA format.

Figure 9.3. Sequence alignment of crystal structure of D-alanine: D-alanine ligase (2I80) with Sp-Ddl model based on sequence homology with clastalW algorithm.

Figure 9.4. Phylogenetic trees based on the multiple sequence alignment of Sp-Ddl with D-alanine: D-alanine ligase from S. aureus (2I80), S. aureus subsp. aureus col (2I87), S. typhimurium (3I12), T. thermophilus hb8 (2YZM), T. caldophilus (2FB9), T. thermophilus hb8 (2YZG), M. tuberculosis (3LWB) X. oryzae pv. Oryzae (3E5N) L. mesenteroides (1EHI) E. faecium (1E4E) E. coli (1IOV and 11OW) H. pylori ss1 (2PVP).

Figure 9.5. The 3D model of Sp-Ddl.

Figure 9.6. The Homology model of Sp-Ddl.

Figure 9.7. A) Total energy of Sp-Ddl. B) RMSD of Sp-Ddl. C) Total protein RMSF of Sp-Ddl. D) C-alpha chain of protein RMSF of Sp-Ddl.
E) Backbone of protein RMSF of Sp-Ddl. 129
F) Main chain of protein RMSF of Sp-Ddl. 130
G) Side chain of protein RMSF of Sp-Ddl. 130

Figure 9.8. Ramachandran plot for Sp-Ddl model produced by
PROCHECK. 131

Figure 9.9. Main chain parameters of Sp-Ddl model generated by
PROCHECK. 132

Figure 9.10. Side chain parameters of Sp-Ddl model generated by
PROCHECK. 133

Figure 9.11. ProSA-web Z-scores and energy of 2I80 (A and B) and
Sp-Ddl model (C and D). 135

Figure 9.12. Amino acids involved in different secondary structural
conformation Sp-Ddl model analyzed from PDBsum. 136

Figure 9.13. Domain structure of Sp-Ddl model (MotifScan and pfam
graphical output).
 a) The model represented diagrametically as a tube form, the
 major C-terminal domain represented as red colour with two
 predicted active sites and the shorter N-terminal domain
 represented as green colour. 137
 b) A plot of the predicted surface accessibility at each residue. 137
 c) The 3D model of Sp-Ddl of model were shown with
 N-terminal and C-terminal. 137

Figure 9.14. The active site residues of Sp-Ddl model. 140

Figure 9.15. Superposition of 2I80 with Sp-Ddl model. 140

Figure 9.16. Different views of active site amino acids of Sp-Ddl model. 141

Figure 9.17. The ion pairs and salt bridges of Sp-Ddl model determined
 from Jmol first glance online server. 141

Figure 9.18. A - Chemical structures of DLM 1 to DLM 3.
 B - Chemical structures of DLM 4 to DLM 6.
 C - Chemical structures of DLM 7 to DLM 9.
 D - Chemical structures of DLM 10 to DLM 12.
 E - Chemical structures of DLM 13 to DLM 15.
 F - Chemical structures of DLM 16 to DLM 18.
G - Chemical structures of DLM 19 to DLM 21. 150
H - Chemical structures of DLM 22 to DLM 24. 151

Figure 9.19. Binding domain showing electrostatic potential surface of Sp-Ddl model (blue +ve and red-ve) with interactions of DLM ligands. 154

Figure 9.20. Binding interactions of DLM ligands with active site amino acids of catalytic domain of Sp-Ddl model. 154

Figure 9.21. The interactions of the DLM-1 ligand with Ser22, Leu301, Asn302 and Pro305 at binding pocket of Sp-Ddl model. 155

Figure 9.22. The interactions of the D-alanine (Substrate) with His93 and Thr303 at binding pocket of Sp-Ddl model. 157

Figure 9.23. The interactions of the D-Cycloserine (Inhibitor) with His93 and Thr303 at binding pocket of Sp-Ddl model. 157

Figure 9.24. The interactions of the 3-chloro-2,2-dimethyl-N-(4- (trifluoro-methyl) phenyl) propanamide (Inhibitor) with Ser22, Pro305 and Phe307 at binding pocket of Sp-Ddl model. 158

Figure 10.1. Catalytic mechanism of DltA. 160

Figure 10.2. Amino acid sequence of Sp-DltA in FASTA format. 161

Figure 10.3. Sequence alignment of crystal structures of DltA from B.cerus (3DHV) with Sp-DltA model based on sequence homology with clastalW algorithm. 162

Figure 10.4. Phylogenetic trees based on the multiple sequence alignment of Sp-DltA with D- alanine: D-alanyl carrier protein ligase from B.cereus (3DHV) B.subtilis (3E7W) B. brevis (1AMU) B.subtilis (2VSQ) N. loli (3ITE). 163

Figure 10.5. The 3D model of Sp-DltA. 164

Figure 10.6. The Homology model of Sp-DltA. 164

Figure 10.7. A) Total energy plot of Sp-DltA. 166
 B) RMSD plot of Sp-DltA. 167
 C) Total protein RMSF plot of Sp-DltA. 167
 D) C-alpha chain of protein RMSF plot of Sp-DltA. 167
 E) Backbone of protein RMSF plot of Sp-DltA. 167
 F) Main chain of protein RMSF plot of Sp-DltA. 168
G) Side chain of protein RMSF plot of Sp-DltA.

Figure 10.8. Ramachandran plot for Sp-DltA model produced by PROCHECK.

Figure 10.9. Main chain parameters of Sp-DltA model generated by PROCHECK.

Figure 10.10. Side chain parameters of Sp-DltA model generated by PROCHECK.

Figure 10.11. ProSA-web Z-scores and energy of 3DHV (A and B) and Sp-DltA model (C and D).

Figure 10.12. Amino acids involved in different secondary structural conformation Sp-Alr model analyzed from PDBsum.

Figure 10.13. Domain structure of Sp-DltA model. (MotifScan and Pfam graphical output)
 a) The major N-terminal domain represented as green colour with one predicted active site.
 b) A plot of the predicted surface accessibility at each residue.
 c) The 3D model of Sp-DltA of model was shown with N-terminal and C-terminal.

Figure 10.14. The active site residues of Sp-DltA model.

Figure 10.15. Superposition of Sp-DltA model with 3DHV.

Figure 10.16. Different views of active site amino acids of Sp-DltA model.

Figure 10.17. The ion pairs and salt bridges of Sp-DltA model determined from Jmol first glance online server.

Figure 10.18. A - Chemical structures of DLM 1 to DLM 3.
 B - Chemical structures of DLM 4 to DLM 6.
 C - Chemical structures of DLM 7 to DLM 9.
 D - Chemical structures of DLM 10 to DLM 12.
 E - Chemical structures of DLM 13 to DLM 15.
 F - Chemical structures of DLM 16 to DLM 18.
 G - Chemical structures of DLM 19 to DLM 21.
 H - Chemical structures of DLM 22 to DLM 24.
Figure 10.19. Binding domain showing electrostatic potential surface of Sp-DltA model (blue +ve and red -ve) with interactions of DLM ligands.

Figure 10.20. Binding interactions of DLM ligands with active site amino acids of catalytic domain of Sp-DltA model.

Figure 10.21. The interactions of the DLM 1 ligand with Glu250, Asn270, Asn398, Ala406 and Lys475 at binding pocket of Sp-DltA.

Figure 10.22. The interaction of D-alanine with active site residues (Asp175, Gly273, Val279 and Lys475) of Sp-DltA.

Figure 10.23. The interaction of D-alanine adenylate with active site residues (Gly248, Ala271, Asp361, Arg376 and Lys475) of Sp-DltA.

Figure 10.24. The interaction of 5'-0-[N-(D-Alanyl)-sulfamoyl]-adenosin with active site residues (Asp247, Gly273, Glu391 and Lys475) of Sp-DltA.

Figure 10.25. The interaction of Ascamycin with active site residues (Gly273, Thr275 and Tyr373) of Sp-DltA.