2.0 INTRODUCTION

In the previous chapter we have defined fuzzy total variation. In this chapter we are introducing the concept of fuzzy integrability of a fuzzy simple function. Further we have constructed a set function \(\alpha (E) = \int f (x_a) \, d\mu \), \(E \in C \) which is an additive fuzzy measure and which has fuzzy total variation. \(\nu (\alpha, E) = \sum \| f (x_a) \| \, d\mu \). We have proved that the fuzzy set of all fuzzy integrable simple functions on \(F(X_p) \) form a fuzzy linear subspace of \(F(X_p) \).

2.1 THE FUZZY INTEGRABILITY

Let \(X_p \) be the (crisp) collection of fuzzy points. \(Y \) be a real Banach space and \(C \) be a \(\sigma \)-algebra of fuzzy subsets of \(X_p \).

Definition 2.1.1

Let \(f \) be a function from \(X_p \) to \(Y \) which has only finite set of values \(y_1, y_2, ..., y_n \)

\[
\text{for which } f^{-1}(y_i) = \{ x_i : x_i \in X_p, f(x_i) = y_i \} \in C, \quad i=1,2,...,n.
\]
Remark 2.1.2

Consider the set of malignant cells in some part of a cancer patient and consider the set of images under X-ray photograph. Then the set of malignant cells form a collection of fuzzy sets. The images are considered to be a crisp set. Here the mapping f defined from set of fuzzy sets (points) into the set of crisp set (points) is a fuzzy function.

Remark 2.1.3

Let X_p be the collection of cancer infected points in some part of the body of a cancer patient and count the cancer cells. A map f is defined from this set into the set of natural numbers. Then the mapping f is a fuzzy function. Here we count different cancer infected points (cells) which are having different intensity of malignance by the function.

Definition 2.1.4

Any function g from X_p to Y which differs from f by a fuzzy μ-null function is called a fuzzy simple function.

Definition 2.1.5

Let $f : X_p \to Y$. Then f is called fuzzy measurable if for every $A \in \mathcal{C}$ with $v(\mu, A) < \infty$, the product Af of f with membership function $A(x)$ is measurable.

Definition 2.1.6

A fuzzy set E is measurable if the membership function $E(x)$ is measurable.
Definition 2.1.7

A fuzzy simple function is integrable if it differs by a fuzzy μ-null function from a function of the form $f = \sum_{i=1}^{n} y_i \cdot A_i$ where A_1, A_2, \ldots, A_n form a finite family of disjoint fuzzy sets in \mathbb{C} with $\bigoplus_{i=1}^{n} A_i = \varnothing$.

Remark 2.1.8

If h is an integrable fuzzy simple function which differs from f by a fuzzy μ-null function then $|f - h| = 0$.

Definition 2.1.9 (Definition 4.2 of [I])

Let $f = \sum_{i=1}^{n} y_i \cdot A_i$ and $g = \sum_{j=1}^{m} z_j \cdot E_j$ be two fuzzy simple functions. We call the sum $f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot (A_i \cdot E_j)$ and we call the product of f and g be the fuzzy simple function $f \cdot g = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i \cdot z_j) \cdot (A_i \cdot E_j)$.
Definition 2.1.10

If \(E \) is a fuzzy set in \(C \) and \(\mu \) is a non-negative finite fuzzy measure, the fuzzy integral over \(E \) of an integrable simple function \(h \) is defined by

\[
\int_E h d\mu = \int_E f d\mu = \sum_{i=1}^{n} y_i \mu(E_i E_i)
\]

where \(f \) has the form

\[
f = \sum_{i=1}^{n} y_i \cdot E_i \quad \text{with} \quad |f - h| = 0 \Rightarrow \mu(E_i E_i) = +\infty
\]

implies \(\gamma_i = 0 \).

Proposition 2.1.11

If \(E, A_1, A_2 \) are disjoint fuzzy sets. Then

\[
\left(E(A_1 \oplus A_2) \right)(x) = E(x) \cdot A_1(x) + E(x) \cdot A_2(x)
\]

Proof

\[
\left(E(A_1 \oplus A_2) \right)(x) = E(x) \cdot (A_1 \oplus A_2)(x)
\]

\[
= E(x) \cdot \min(1, A_1(x) + A_2(x))
\]

\[
= E(x) \cdot \left(A_1(x) + A_2(x) \right)
\]

\[
= E(x) \cdot A_1(x) + E(x) \cdot A_2(x)
\]
Proposition 2.1.12

The fuzzy integral we have defined in 2.1.10 is well defined.

Proof

Let \(f = \sum_{i=1}^{n} y_i \cdot A_i \) where \(A_1, A_2, \ldots, A_n \) is a finite family of disjoint fuzzy sets in \(C \) with \(\bigoplus_{i=1}^{n} A_i = X \) and \(y_i = f(x_i) \) be given in definition 2.1.1. Let \(g \) be another function which differs from \(h \) by a fuzzy \(\mu \)-null function and let

\[
g = \sum_{j=1}^{m} z_j \cdot E_j \text{, where } E_1, E_2, \ldots, E_m \text{ is a finite family of disjoint fuzzy sets in } C
\]

with \(\bigoplus_{j=1}^{m} E_j = X \).

By definition \(f - g = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i - z_j) \cdot (A_i \cdot E_j) \)

Now \(|f - g| = |f - h + h - g| \)

\[
\leq |f - h| + |h - g| = 0
\]

Since \(f - h \) and \(h - g \) are fuzzy \(\mu \)-null functions. Hence \(f - g \) is a fuzzy \(\mu \)-null function.

ie. \(\int f - g \, d\mu = 0 \).

This implies \(y_i - z_j = 0 \)

Therefore \(\int_{E} f \, d\mu - \int_{E} g \, d\mu = \sum_{i=1}^{n} y_i \cdot \mu(E \cdot A_i) - \sum_{j=1}^{m} z_j \cdot \mu(E \cdot E_j) \)
\[
= \sum_{i=1}^{n} \sum_{j=1}^{m} y_i \cdot \mu(l_i A_i \cdot E_j) - \sum_{i=1}^{n} \sum_{j=1}^{m} z_j \cdot \mu(E A_i \cdot E_j)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i - z_j) \cdot \mu(E A_i \cdot E_j)
\]

\[
= 0. \text{ Since } y_i \cdot z_j = 0.
\]

Hence \(\int f \mu = \int g \mu\)

This means, \(\int g \mu\) is independent of the particular representing function \(f\) used.

The above argument also shows that \(\int h \mu = \int k \mu\) if \(h\) and \(k\) are both integrable fuzzy simple functions with \(|h - k| = 0\)

2.2. FUZZY LINEAR SUBSPACE

In this section we define fuzzy linear subspace and show that the set of all integrable fuzzy simple functions on \(F(X_p)\) form a fuzzy linear subspace of \(F(X_p)\).

Definition 2.2.1

A fuzzy set \(S\) in \(F(X_p)\) is called a fuzzy linear subspace of \(F(X_p)\) if \(f + g \in S\) and \(\alpha f \in S\) for every scalar \(\alpha\) and \(f, g \in S\).

Proposition 2.2.2

Let \(S\) be the fuzzy set of all integrable fuzzy simple functions on \(F(X_p)\). This \(S\) is a fuzzy linear subspace of \(F(X_p)\).
Proof

Let \(h \) be an integrable fuzzy simple function which differs by a fuzzy \(\mu \)-null function of the form \(f = \sum_{i=1}^{n} y_i A_i \) where \(A_1, A_2, \ldots, A_n \) are finite family of disjoint fuzzy sets with \(\bigoplus_{i=1}^{n} A_i = \emptyset \) and \(y_i = 0 \) if \(\nu(\mu, A_i) = \infty \). Similarly let \(k \) be an integrable fuzzy simple function which differs by a fuzzy \(\mu \)-null function of the form \(g = \sum_{j=1}^{m} z_j E_j \) where \(E_1, E_2, \ldots, E_m \) are disjoint family of fuzzy sets with \(\bigoplus_{j=1}^{m} E_j = X \) and \(z_j = 0 \) if \(\nu(\mu, E_j) = \infty \).

\[
|f + g - (h + k)| \leq |f - h| + |g - k| = 0
\]

Since \(f - h \) and \(g - k \) are fuzzy \(\mu \)-null functions. Hence \(h + k \) differs by a fuzzy \(\mu \)-null function from a function of the form.

\[
f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot (A_i \oplus E_j)
\]

where \(A_i \cdot E_j \) are disjoint fuzzy sets in \(X \) and \(\nu(\mu, A_i, E_j) < \infty, y_i \neq 0, z_j \neq 0 \) and \(\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m} A_i \cdot E_j = \emptyset \).

Thus if \(h \in S, k \in S \), then \(h + k \in S \). Now \(|\alpha \cdot f - \alpha \cdot h| = |\alpha| \cdot |f - h| = 0 \) since \(f - h \) is a fuzzy \(\mu \)-null function. Here \(\alpha \cdot h \) differs by a fuzzy \(\mu \)-null function from a function of the form \(\alpha f = \alpha \sum_{i=1}^{n} y_i A_i = \sum_{i=1}^{n} \alpha y_i A_i \). Hence \(\alpha \cdot h \in S \). Thus \(S \) form a fuzzy linear subspace of \(F(X_{\mu}) \).
Proposition 2.2.3

Let S be the set of all integrable fuzzy simple functions on $\mathbb{F}(X_p)$ and μ be an additive fuzzy measure. Then the fuzzy integral

$$\int_E h \, d\mu = \int_E f \, d\mu = \sum_{i=1}^{n} y_i \, \mu(E_i)$$

is a linear mapping from S to Y, where Y is a real Banach space.

Proof

Let h be an integrable fuzzy simple function which differs by a fuzzy μ-null function of the form $f = \sum_{i=1}^{n} y_i \, A_i$ where A_1, A_2, \ldots, A_n are finite family of disjoint fuzzy sets with $\bigcup_{i=1}^{n} A_i = \emptyset$. Similarly let k be an integrable fuzzy simple function which differs by a fuzzy μ-null function of the form $g = \sum_{j=1}^{m} z_j \, E_j$ where E_1, E_2, \ldots, E_m are disjoint family of fuzzy sets with $\bigcup_{j=1}^{m} E_j = \emptyset$.

We have $\int_E f \, d\mu = \sum_{i=1}^{n} y_i \, \mu(E_i)$ and $\int_E g \, d\mu = \sum_{j=1}^{m} z_j \, \mu(E_j)$, $E \in C$.

Then

$$\int_E h \, d\mu = \int_E f \, d\mu = \sum_{i=1}^{n} y_i \, \mu(E_i)$$

$$\int_E k \, d\mu = \int_E g \, d\mu = \sum_{j=1}^{m} z_j \, \mu(E_j).$$
But by definition

\[f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot (A_i \cup E_j) \]

Therefore

\[\int_{E} (f + g) \, d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot \mu (E_i \cup E_j) \]

Hence

\[\int_{E} (f + g) \, d\mu = \int_{E} (h + k) \, d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot \mu (E_i \cup E_j) \]

Now

\[\int_{E} f \, d\mu + \int_{E} g \, d\mu = \sum_{i=1}^{n} y_i \cdot \mu (E_i) + \sum_{j=1}^{m} z_j \cdot \mu (E_j) \]

Since \(E_1, E_2, \ldots, E_m \) and \(A_1, A_2, \ldots, A_n \) are disjoint fuzzy sets in \(X \) and

\[\bigoplus_{i=1}^{n} A_i = X \]

\[\bigoplus_{j=1}^{m} E_j = X \]

Hence

\[\int_{E} f \, d\mu + \int_{E} g \, d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot \mu (E_i \cup E_j) \]

\[= \sum_{i=1}^{n} \sum_{j=1}^{m} (y_i + z_j) \cdot \mu (E_i \cup E_j) \]

\[= \int_{E} (f + g) \, d\mu \]
Let α be a scalar.

Then $\int \alpha f \, d\mu = \int \alpha h \, d\mu = \alpha \int h \, d\mu = \alpha \int f \, d\mu$.

Hence the mapping $\int f \, d\mu$ from S to Y is linear.

Theorem 2.2.4

If f is an integrable fuzzy simple function then $\| \int f(x) \, d\mu \| \leq \int \| f(x) \| \, dv$.

The set function $\alpha(E) = \int f(x) \, d\mu$ is an additive fuzzy measure on C whose total variation $\nu(\alpha, E) = \int f(x) \, dv$. Also $\nu(\mu, E) \to 0$ as $\int f(x) \, d\mu = 0$.

Proof

First we prove that $\alpha(E)$ is an additive fuzzy measure.

Let $A_1, A_2 \in C$, then $\alpha(A_1 \oplus A_2) = \int f(x) \, d\mu$.

$$= \sum_{i=1}^{n} y_i \mu(A_1 \oplus A_2, E_i)$$

$$= \sum_{i=1}^{n} y_i \left[\mu(A_1, E_i) + \mu(A_2, E_i)\right]$$

$$= \sum_{i=1}^{n} y_i \mu(A_1, E_i) + \sum_{i=1}^{n} y_i \mu(A_2, E_i)$$

$$= \int f(x) \, d\mu + \int f(x) \, d\mu$$

$$= \alpha(A_1) + \alpha(A_2)$$
Similarly $\alpha \left(\bigoplus_{i=1}^{n} A_i \right) = \sum_{i=1}^{n} \alpha(A_i)$.

Now $\alpha \left(\bigoplus_{n \in N} A_n \right) = \alpha \left(\lim_{n \in N} \bigoplus_{k=1}^{n} A_k \right)$

$$= \lim_{n \in N} \alpha \left(\bigoplus_{k=1}^{n} A_k \right)$$

$$= \lim_{n \in N} \sum_{k=1}^{n} \alpha(A_k)$$

$$= \sum_{n=1}^{\infty} \alpha(A_n)$$

Clearly $\alpha(\emptyset) = 0$ and $\alpha(E) \geq 0$. Hence $\alpha(E)$ is an additive fuzzy measure on C.

Let $E \in C$ and $\bigoplus_{i=1}^{n} E_i = E$ where $E_1, E_2 \ldots E_n$ are disjoint fuzzy sets in C.

Then $\|\alpha(E)\| = \|\alpha \left(\bigoplus_{i=1}^{n} E_i \right)\|$

$$\leq \sum_{i=1}^{n} \|\alpha(E_i)\|$$

$$\leq \sup \left(\sum_{i=1}^{n} \|\alpha(E_i)\| \right) \quad (E_i \in C)$$

$$\leq \nu(\alpha, E)$$
Hence $\| \alpha (E) \| \leq \nu (\alpha, E)$

\[\| f (x, \lambda) \| d\mu \leq \int_{E} \| f (x, \lambda) \| d\nu (x, \lambda) \]

Since f is an integrable fuzzy simple function it differs by a fuzzy μ-null function from a function of the form $h = \sum_{i=1}^{n} y_i E_i$ where E_1, E_2, \ldots, E_n are disjoint fuzzy sets in C with $\bigoplus_{i=1}^{n} E_i = X$ and $y_i = 0$ if $\nu (\mu, E_i) = \infty$. Then $| f - h | = 0$

ie. $f = h$ on C

We have $\alpha (E) = \sum_{E_{i} = 1}^{n} y_i E_i$.\[\mu (E, E_i) \]

Now $h = \sum_{i=1}^{n} y_i E_i$ where E_i is the membership function representing the fuzzy sets E_i.

\[\| h \| = \sum_{i=1}^{n} \| y_i \| E_i \]

Hence $\| f (x, \lambda) \|$ is an integrable fuzzy simple function and is real valued. Now $\nu (\mu, E)$ is an additive fuzzy measure. f is real valued integrable fuzzy simple function. $\| f \|$ is also real valued fuzzy simple function.

Then $\int_{E} \| f (x, \lambda) \| d\nu = \sum_{i=1}^{n} \| y_i \| \nu (\mu, E, E_i)$. \[(1) \]
Let $E \in C$ and let $A_j, j = 1, 2, \ldots, m$ be disjoint fuzzy sets in C with $A = \bigoplus_{j=1}^{m} A_j \subseteq E$

Then $\alpha (A_j) = \int x_i \, d\mu = \sum_{i=1}^{n} y_i \cdot \mu (A_j, E_i)$

Therefore $\| \alpha (A_j) \| = \sum_{i=1}^{n} \| y_i \| \cdot | \mu (A_j, E_i) |$

ie. $\sum_{j=1}^{m} \| \alpha (A_j) \| = \sum_{j=1}^{m} \sum_{i=1}^{n} \| y_i \| \cdot | \mu (A_j, E_i) |$

But $| \mu (A_j, E_i) | \leq \nu (\mu, A_j, E_i)$

Therefore $\sum_{j=1}^{m} \| \alpha (A_j) \| \leq \sum_{j=1}^{m} \sum_{i=1}^{n} \| y_i \| \cdot \nu (\mu, A_j, E_i)$

\[\leq \sum_{i=1}^{n} \| y_i \| \cdot \sum_{j=1}^{m} \nu (\mu, A_j, E_i)\]

\[\leq \sum_{i=1}^{n} \| y_i \| \cdot \nu (\mu, \bigoplus_{j=1}^{m} A_j, E_i)\]

\[\leq \sum_{i=1}^{n} \| y_i \| \cdot \nu (\mu, A, E_i)\]

\[\leq \sum_{i=1}^{n} \| y_i \| \cdot \nu (\mu, E, E_i)\]

\(\text{Since } A = \bigoplus_{j=1}^{m} A_j \subseteq E\)
Taking the supremum over all partitions A_i of E and the R.H.S is independent of A_i

$$v(\alpha, E) \leq \sum_{i=1}^{n} \| y_i \| \cdot v(\mu, E.E_i)$$

$$v(\alpha, E) \leq \int \| f(x) \| \, dv$$

Now we are going to show that $v(\alpha, E) \geq \int \| f(x) \| \, dv$

Let $\varepsilon > 0$, there exists $F_p \in C$, $p = 1, 2, \ldots$, be the disjoint fuzzy subsets of E with

$$\sum_{p=1}^{P_i} \| \mu, (E.F_p) \| \geq v(\mu, E.E_i) - \frac{\varepsilon}{\sum_{i=1}^{n} \| y_i \|}$$

We have $\alpha(E.F_p) = \int f(x) \, d\mu$

$$= y_i \cdot \mu(E.F_p). \quad \text{Since } f \text{ takes the value } y_i \text{ on } E. F_p$$

$$\| \alpha(E.F_p) \| = \| y_i \| \cdot | \mu(E.F_p) |$$

Now $v(\alpha, E.E_j) = \sup \sum_{p=1}^{P_i} \| \alpha(E.F_p) \|$

$$\geq \sum_{p=1}^{P_i} \| \alpha(E.F_p) \|$$
\[
\sum_{j=1}^{n} v(\alpha, E, E_j) \geq \sum_{j=1}^{n} \sum_{p=1}^{p_j} \| \alpha (E, F) \| \\
\nu(\alpha, E) \geq \sum_{j=1}^{n} \sum_{p=1}^{p_j} \| \nu_{ij} \| \mu (E, F) \\
\geq \sum_{j=1}^{n} \| y_i \| \sum_{p=1}^{p_j} \| \mu (E, F) \| \\
\geq \sum_{j=1}^{n} \| y_i \| \left(v(\mu, E, E_j) - \frac{\varepsilon}{\sum_{j=1}^{n} \| y_j \|} \right) \\
\geq \sum_{j=1}^{n} \| y_i \| \nu(\mu, E, E_j) - \varepsilon \\
\geq \int_{E} \| f(x, \lambda) \| dv - \varepsilon \\
\nu(\alpha, E) \geq \int_{E} \| f(x, \lambda) \| dv
\] (using 1)

But \(\varepsilon \) is arbitrary

\[
\nu(\alpha, E, E_j) \geq \int_{E} \| f(x, \lambda) \| dv
\] (4)

From (2) and (4)

\[
\nu(\alpha, E, E_j) = \int_{E} \| f(x, \lambda) \| dv
\]

We have seen that \(\| \alpha (E) \| \leq \nu(\alpha, E) \) for \(E \in C \)

ie. \[\int_{E} \| f(x, \lambda) \| d\mu \leq \int_{E} \| f(x, \lambda) \| dv, \quad E \in C \]
To prove the last result consider the following.

\[\int_{E} f(x_{\lambda}) \, d\mu = \sum_{j=1}^{n} y_{i} \cdot \mu(E.E_{i}) \quad \text{where } E_{i}'s \text{ are disjoint fuzzy sets in } C \text{ and } \]

\[\bigoplus_{i=1}^{n} E_{i} = X \]

Then \[\| \int_{E} f(x_{\lambda}) \, d\mu \| \leq \sum_{i=1}^{n} \| y_{i} \| \cdot | \mu(E.E_{i})| \leq \sup_{1 \leq i \leq n} \| y_{i} \| \cdot \sum_{i=1}^{n} | \mu(E.E_{i})| \]

\[\leq \sup_{1 \leq i \leq n} \| y_{i} \| \cdot v(\mu, E.) \]

Hence \[\lim_{\mathcal{X}(\lambda,E) \to 0} \int_{E} f(x_{\lambda}) \, d\mu = 0 \]

Proposition 2.2.5

If \((f_{n}^{1}), (f_{n}^{2})\) are sequences of integrable fuzzy simple functions both converging in fuzzy measure on \(X_{\lambda}\) to the same limit and if

\[m, n \to \infty \int_{X_{\lambda}} \| f_{n}^{i} (x_{\lambda}) - f_{n}^{i} (x_{\lambda}) \| dv = 0, \quad i=1, 2 \]

Then \[n \to \infty \int_{E} f_{n}^{i} (x_{\lambda}) d\mu, i=1,2 \text{ exist uniformly with respect to } E \text{ in } C \text{ and are equal.} \]
Proof

\[
\| \int_E f^i_n(x_\lambda) \, d\mu - \int_E f^i_m(x_\lambda) \, d\mu \| = \| \int_E (f^i_n(x_\lambda) - f^i_m(x_\lambda)) \, d\mu \| \\
\leq \int_E \| f^i_n(x_\lambda) - f^i_m(x_\lambda) \| \, d\nu \quad \text{by Proposition 2.2.4}
\]

But \[\lim_{m, n \to \infty} \int_{\chi_p} \| f^i_n f(x_\lambda) - f^i_m(x_\lambda) \, d\mu \| \, d\nu = 0, \quad i = 1, 2\]

This means that \[\lim_{m, n \to \infty} \int_{\chi_p} \| f^i_n - f^i_m \, (x_\lambda) \, d\mu \| \, d\nu \to 0 \quad \text{as} \ m, n \to \infty \quad i = 1, 2\]

Thus \[\int_E f^i_n(x_\lambda) \, d\mu - \int_E f^i_m(x_\lambda) \, d\mu \] are Cauchy sequences. The values of these sequences are in Banach space which converge uniformly with respect to \(E \) in \(C \).

Next we have to show that these limits are equal. Let us denote.

\[
\mathcal{P}_n(E) = \| f^i_n(x_\lambda) - f^{i'}_n(x_\lambda) \| \quad \text{and} \quad P_n(E) = \int_{\chi_p} p_n \, d\mu
\]

\[
\| p_n(x_\lambda) - p_m(x_\lambda) \| = \| f^i_n(x_\lambda) - f^{i'}_n(x_\lambda) - (f^i_m(x_\lambda) - f^{i'}_m(x_\lambda)) \| \\
\leq \| f^i_n(x_\lambda) - f^i_m(x_\lambda) \| + \| f^{i'}_n(x_\lambda) - f^{i'}_m(x_\lambda) \|
\]

\[
\lim_{m, n \to \infty} \int_{\chi_p} \| p_n(x_\lambda) - p_m(x_\lambda) \| \, d\nu \leq \lim_{m, n \to \infty} \int_{\chi_p} \| f^i_n(x_\lambda) - f^i_m(x_\lambda) \| \, d\nu
\]

\[+ \lim_{m, n \to \infty} \int_{\chi_p} \| f^{i'}_n(x_\lambda) - f^{i'}_m(x_\lambda) \| \, d\nu = 0 \quad \text{given}\]
Hence \(\lim_{m,n \to \infty} \int_E \left| p_n(x, \lambda) - p_m(x, \lambda) \right| \, d\nu = 0 \) since \(E \subseteq X_\nu \). Hence \(\{\mathcal{P}_n(E)\} \) is a Cauchy sequence and the limit \(\lim_{n \to \infty} \mathcal{P}_n(E) = \mathcal{P}(E) \) exists uniformly with respect to \(E \) in \(C \). By Proposition 2.2.4

\[
\left\| \int_E f_n^1(x, \lambda) \, d\mu - \int_E f_n^2(x, \lambda) \, d\mu \right\| := \int_E \left\| f_n^1(x, \lambda) - f_n^2(x, \lambda) \right\| \, d\nu = \int_E p_n \, d\nu
\]

\[
= P_n(E) \to 0 \quad E \in C
\]

Thus \(\left\| \int_E f_n^1(x, \lambda) \, d\mu - \int_E f_n^2(x, \lambda) \, d\mu \right\| \to 0 \)

ie. \(\lim_{n \to \infty} \int_E f_n^1(x, \lambda) \, d\mu - \int_E f_n^2(x, \lambda) \, d\mu = 0 \)

Thus \(\lim_{n \to \infty} \int_E f_n^1(x, \lambda) \, d\mu = \int_E f_n^2(x, \lambda) \, d\mu \)

Next we show that \(\mathcal{P}(E) = 0 \)

Let \(\{f_n^1(x, \lambda)\} \) and \(\{f_n^2(x, \lambda)\} \) converges in fuzzy measure to \(f \). Then

\[
n \to \infty \quad | f_n^1(x, \lambda) - f(x, \lambda) | = 0 \quad \text{and} \quad n \to \infty \quad | f_n^2(x, \lambda) - f(x, \lambda) | = 0
\]
\[
\begin{align*}
\lim_{n \to \infty} | f_n(x_1) - f^2(x_1) | &= \lim_{n \to \infty} | f_n(x_1) - f(x_1) + f(x_1) - f^2(x_1) | \\
&\leq \lim_{n \to \infty} | f_n(x_1) - f(x_1) | + \lim_{n \to \infty} | f_n^2(x_1) - f(x_1) | \\
&= 0
\end{align*}
\]

Hence \(\lim_{n \to \infty} | f_n(x_1) - f_n^2(x_1) | = 0 \) \ ...(1)

Consider \(\lim_{\|x, E\| \to 0} \Phi(E) = \lim_{\|x, E\| \to 0} \int F_n(x_1) \, d\nu = 0 \) by proposition 2.2.4

Thus for \(\varepsilon > 0 \) there exists a \(\delta > 0 \) and an integer \(n_0 \) such that

\(P(E) < \varepsilon \) for \(\nu(\mu, E) < \delta \) \ ...(2)

Since \(P(E) \to 0 \) as \(\nu(\mu, E) \to 0 \) and \(|\Phi(E) - p_n(E)| < \varepsilon \) for \(n \geq n_0, E \in C \) \ ...(3)

Since \(p_{n_0}(x_1) \) is fuzzy simple function \(p_{n_0}(x_1) = 0 \) for \(x_1 \in A' \) for the fuzzy set \(A \in C \) with \(\nu(\mu, A) < \infty \)

Therefore \(\int_{A'} \| f_{n_0}(x_1) - f_{n_0}^2(x_1) \| \, d\nu = 0 \)

Hence \(p_{n_0}(A') = 0 \)

Since from (3) \(|P(A') - P_{n_0}(A')| < \varepsilon \)

ie. \(|P(A') - 0| < \varepsilon \) implies \(\Phi(A) < \varepsilon \) - \ ...(4)
Hence $\delta_0 (E) \to 0$ in fuzzy measure on X_p by using (1) and thus there exists an integer $n_1 \geq n_0$ and a fuzzy set $B \in C$ such that $\nu(\mu, B') < \delta$ implies

$$p_{n_1}(x_\lambda) < \frac{\epsilon}{\nu(\mu, A) + 1} \quad \cdots (5)$$

for $x_\lambda \in B$

From (3) and (5)

$$P(A \cup B) \leq \int_{A \cup B} p_{n_1}(x_\lambda) d\nu + \epsilon \leq \epsilon + \epsilon < 2\epsilon \quad \cdots (6)$$

Since $\nu(\mu, A \cup B') \leq \nu(\mu, B')$

$$P(X_p) \leq P(A \cup B) + P(A \cup B') + P(A') \leq 2\epsilon + \epsilon + \epsilon < 4\epsilon \quad \text{using (2), (4) and (6) since } \epsilon \text{ is arbitrary}$$

Therefore $0 \leq P(E) \leq P(X_p)$

Hence $P(E) = 0 \ \forall \quad E \in C$