Chapter-III

GENERAL EXPERIMENTAL PROCEDURES
Section-1 Zero order spectrophotometric and derivative spectrophotometric procedures:

(a) Absorption spectrum of 2,4-DHAHB:

5 ml of buffer solution of required pH and appropriate volumes of DMF and the reagent solution are taken in a 10 ml volumetric flask. The total volume of the mixture is brought to 10 ml with distilled water. The absorbance of the solution is measured in suitable wavelength region against a blank consisting of 5 ml of buffer solution, appropriate volume of DMF and made up to the mark in 10 ml volumetric flask. A plot is drawn between absorbance and the wavelength.

(b) Absorption spectrum of the solution containing the complex species:

In a 10 ml volumetric flask, 5 ml of buffer solution of desired pH and appropriate volumes of DMF, metal ion solution and reagent solution are taken. The contents of flask are brought to the mark with distilled water. It absorbance is measured in suitable in wavelength region against the reagent blank prepared under identical conditions. A plot between absorbance and the wavelength is drawn from which the analytical wavelength is selected.

(C) Effect of pH on the absorbance of the solution containing complex species:

A known aliquot of metal ion & appropriate volumes of DMF & reagent solutions are taken in different 10 ml volumetric flasks each containing 5 ml of buffer solution of different pH values. The contents of each flask are made up to the mark with distilled water & the absorbents of these solutions are measured against the corresponding reagent blank at the analytical wavelength. A plot then made between absorbance & PH, from which the working is chosen.

(d) Effect of the reagent concentration:

In a series of 10ml volumetric flasks containing 5 ml buffer solution of desired pH, appropriate volume of DMF, different known aliquots of the reagent solution, known aliquot of metal ion solution is taken and the contents are brought up to the mark with distilled water. The absorbance of the solution in each flask is measured. Against the corresponding reagent blank at
the analytical wavelength, from which the required molar excess of the reagent necessary for maximum colour formation is ascertained.

e) Effect of time on the colour development and on the stability of the colour:

5 ml of buffer solution, required volume of DMF, an aliquot of metal ion and the reagent solutions are taken in a 10ml volumetric-flask and made up to the mark with distilled water. The absorbance of the solution is measured at different time intervals at the selected wavelength against the reagent blank from which the time interval required to be allowed after mixing various components of the reaction mixture and before measuring the absorbance known.

f) Adherence of the systems to Beer's law:

To ascertain the sensitivity of the colour reactions and to explore the possibility of determining micro amounts of metal ions, the following procedure is adopted.

Varying known aliquots of metal ion solutions are added to a set of 10ml volumetric flasks, each containing 5 ml of buffer solution of desired pH, known volume of DMF and the necessary excess of the reagent solution. The contents of the flasks are brought up to the mark with distilled water and the absorbances of the solutions are measured at the analytical wavelength against the reagent blank. A plot of absorbance and amount of metal ion (\(\mu g/ml\)) is constructed. The slope and the intercept of the plot are computed. The molar absorptivity is calculated from the slope.

g) Effect of foreign ions:

In order to assess the applicability of the proposed methods for analysis of real samples containing the metal ions, the effect of the presence of various foreign ions which are generally found associated with the test metal ions in various real samples on the absorbance of the reaction mixture is studied by adopting the following procedure.
To different 10ml volumetric flasks, each containing an interfering ion of known amount and desired volume of DMF, 5ml buffer solution of desired pH, known aliquots of metal ion and the reagent solutions are added. The contents are brought up to the mark with distilled water. The absorbance is measured at the analytical wavelength against reagent blank from which the tolerance limit of the foreign ion is determined. The amount of foreign ion which brings about a change in absorbance by ±2% is taken as its tolerance limit.

h) Composition and stability constant of the complex species:

The composition of complex species is determined by Job’s and mole ratio methods.

Job’s method:

To a series of 10 ml volumetric flasks, each containing 5 ml of buffer solution of desired PH and known volume of DMF, equimolar solutions of metal ion and the reagent are added in different volume proportions, such that the total volume of the mixture is held constant. The absorbance of each solution is measured at the wavelength of maximum absorbance or at an appropriate wavelength against buffer blank. A plot between mole fraction of the metal ion \((V_M / V_M + V_L)\) or \((C_M / C_M + C_L)\) and the absorbance is made from which the composition of the complex is computed.

i) Determination of stability constant of the metal complexes:

The spectrophotometric data obtained in the study of complexes using Job’s method is used to calculate the stability constants of the complex species under investigation.

For the complex formation reaction

\[
mM + nL \rightarrow MmLn
\]

.... 13
The stability constant

\[
\beta = \frac{A/A_m}{M^m n^n [(1 - A/A_m)]^{m+n} [C]^{m+n-1}}
\]

where

\[A_m = \text{absorbance corresponding to the point of intersection of the extrapolated lines}\]
\[A = \text{observed absorbance at concentration 'C'}\]
\[C = \text{concentration corresponding to the point of intersection}\]
\[\beta = \text{stability constant}\]

For 1:1 complex

\[
\beta = \frac{1 - \alpha}{\alpha C}
\]

For 1:2 complex

\[
\beta = \frac{1 - \alpha}{4\alpha^2 C^2}
\]

For 1:3 complex

\[
\beta = \frac{1 - \alpha}{2\alpha^3 C^3}
\]

\[
\alpha = \frac{A_m - A}{A_m}
\]

where \(\alpha = \text{degree of dissociation}\)
j) Mole ratio method:

5ml of buffer solution and known volume of metal ion solution and varying of the reagent solution are added. The contents of each flask are brought up to the mark with distilled water. The absorbance of each solution is measured at the selected wavelength against the corresponding reagent blank or a blank containing 5ml of buffer solution and required volume of DMF. From the plot between the absorbance and the volume of the reagent, the composition of the complex is ascertained.

Derivative spectrophotometric procedures:

k) Derivative spectrum of the solution containing the complex species:

In a 10 ml volumetric flask, 5ml of buffer solution of desired pH and appropriate volumes of DMF, metal ion solution and the reagent solution are taken. The contents of the flask are brought to the mark with distilled water. Its absorbance spectrum in a suitable wavelength region is recorded against the reagent blank prepared under identical conditions. Then the first and second derivative spectra are recorded. From these analytical wavelengths are fixed.

l) Adherence of the systems to Beer's law (calibration plot):

To ascertain the sensitivity of the colour reaction and to the possibility of determining micro amounts of metal ions the following procedure is adopted.

Varying known aliquots of metal ion solutions are added to a set of 10ml volumetric flasks each containing 5 ml of buffer solution of desired pH. Known volume of DMF and the necessary excess of reagent solution. The contents of the flasks are brought up to the mark with distilled water and the derivative amplitudes of the solutions are measured at the analytical wavelengths against the reagent blank. Plots of derivative amplitudes and amount a metal ion (µg/ml) are constructed. The slope and the intercept of these plots are computed.
REFERENCES