Chapter-VI
Summary
Various instrumental techniques (HPLC, GC, Fluorimetry, NMR, IR, UV and Visible regions) are available for the assay of drugs. Usually spectrophotometric technique is simple and less expensive. The selectivity and sensitivity of the spectrophotometric methods depends only on the nature of chemical reactions involved in colour development and not on the sophistications of the experiment.

UV and Visible spectrophotometric methods are highly versatile, sensitive and reproducible. An attempt is made to develop new spectrophotometric methods for estimating the selected drugs from pharmaceutical preparations.

The contents of the thesis have been divided in six chapters and appropriate references have been placed at the end of the last chapter. Chapter 1 opens with introduction- Historical evolution of drug, sources of drugs, Biological and medical terms used in the study of drugs, Doses form and the role of Analytical chemistry in Pharmacy. Chapter-2 deals with the survey of literature of the selected drugs and Objectives of present investigation. Chapter-3 of the dissertation is divided into three sections. Section (i) describes the preparation of solutions of various drugs and reagents employed.
Section (ii) gives the brief profile of selected drugs. Section (iii) deals with the description of the instrument used in the present study.

Chapter-4 of the dissertation describes a simple ion pair complex method for the estimation of 1. escitalopram 2. nortriptyline 3. primaquine by spectrophotometric method.

The method based on the formation of chloroform extractable complex of drug with wool fast blue at 1.5 pH. The absorbance of the extracted complex is measured and assaying of the drug is made through the calibration curve.

The method is simple and is adopted for the routine pharmaceutical analysis.

Chapter-5 of the dissertation deals with a simple charge transfer complex method for the estimation of 1. escitalopram 2. nortriptyline by spectrophotometric method. The method is based on the reaction of nortriptyline with 2, 3-dichloro-5, 6-dicyano-1, 4-benzquinone (DDQ) to form an yellow colour charge-transfer complex. The yellow colour solution is used to determine the nortriptyline spectrophotometrically.
The method is simple, precise, reproducible and it can be adopted for the routine analysis of drugs in pharmaceutical formulations. Chapter-6 of the dissertation describes the summary of the present investigations.

The present investigations on the assay of the selected drugs have yielded simple, sensitive, rapid spectrophotometric procedures, which are easily applied for their assay in pharmaceutical formulations.