Chapter 7

Conclusion

1. BPA impairs the haematological and cardiovascular function by:
 (i) suppressing the erythropoietic system,
 (ii) enhancing the cardiovascular risk factors through increasing the
 levels of serum calcium, glucose, total protein and lipid profile
 conducive for cardiovascular risk,
 (iii) increasing the activities of transaminases, and
 (iv) inhibiting the cardiac function through
 (a) promoting the oxidative stress induced ventricular tissue injury
 due to decreased activities of antioxidant enzymes and enhanced lipid
 peroxidation of cell membrane,
 (b) inhibiting the activity of acetylcholinesterase (AChE) at the
 acetylcholine binding sites at the cardiac cell membrane,
 (c) promoting the production of NO presumably by activating the
 nitric oxide synthase (NOS) activity and promoting the production of
 cGMP, the end biomolecule, in the NO linked second messenger
 pathway in the cardiac cells by activating guanylyl cyclase,
 (d) lowering the availability of free Ca2+ in the ventricular
 myocytes by causing chelation of Ca2+ and inducing the formation of Ca2+
 plaques in the cardiac cell.

2. Vitamin C can ameliorate the degree of BPA induced oxidative stress by
 lowering the inhibition of the antioxidant enzyme activity and preventing the
 peroxidation of membrane lipids.

Thus, the outcomes of the results may be extrapolated to the physiological systems
of human beings also.
Bibliography

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87: 1620-1624.