CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - VIII</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER-1: Introduction to Corrosion and Corrosion Inhibitors

Section -I: Corrosion

1.1.1. Introduction to corrosion
1.1.2. Theories and mechanism of corrosion
1.1.2.1. Local cell theory
1.1.2.2. Wagner and Trauds’ theory
1.1.3. Classification of corrosion
1.1.3.1. Uniform or general corrosion
1.1.3.2. Galvanic corrosion
1.1.3.3. Localized corrosion
1.1.3.4. Stress corrosion cracking
1.1.3.5. Erosion corrosion
1.1.4. Rate of corrosion
1.1.5. Factors influencing the corrosion rate
1.1.5.1. Nature of the metal
1.1.5.2. Surface state of the metal or nature of the corrosion product
1.1.5.3. pH of the medium
1.1.5.4. Temperature of the medium
1.1.5.5. Effect of dissolved oxygen

Section - II: Corrosion inhibitors

1.2.1. Introduction to corrosion inhibitors
1.2.2. Mechanism of corrosion inhibition
1.2.3. Classification of corrosion inhibitors
1.2.3.1. Passivating inhibitors
1.2.3.2. Volatile inhibitors
1.2.3.3. Cathodic inhibitors
CHAPTER-3: Corrosion Inhibition Efficiency and Adsorption Characteristics of Some Thiazole Schiff Bases on Mild Steel in Hydrochloric Acid Solution

3.1. Introduction

3.2. Synthesis of inhibitors

3.2.1. Synthesis of 4-(4-bromophenyl)-N'-(2,4-dimethoxy benzylidene)thiazole-2-carbohydrazide (BDTC)

3.2.2. Synthesis of 4-(4-bromophenyl)-N'-(4-methoxy benzylidene)thiazole-2-carbohydrazide (BMTC)

3.2.3. Synthesis of 4-(4-bromophenyl)-N'-(4-hydroxy benzylidene)thiazole-2-carbohydrazide (BHTC)

3.3. Results and discussion

3.3.1. Electrochemical Impedance Spectroscopy (EIS)

3.3.2. Potentiodynamic polarization measurements

3.3.3. Mass loss measurements

3.3.4. Effect of temperature

3.3.5. Adsorption considerations

3.3.6. Antioxidant activity and corrosion inhibition

3.3.7. Scanning electron microscopy (SEM)

3.3.8. FTIR studies

3.4. Conclusions

CHAPTER-4: Synthesis and Corrosion Inhibition Characteristics of Oxadiazoles Derivatives on Mild Steel in Hydrochloric Acid Solution

4.1. Introduction

4.2. Synthesis of inhibitors

4.2.1. Synthesis of 2-(2-amino-5-methylthiazol-4-yl) acetohydrazide

4.2.2. Synthesis of 2-(2-amino-5-methylthiazol-4-yl) methyl oxadiazole-5-thiol

4.2.3. Synthesis of 4-((5-mercapto-1,3,4-oxadiazol-2-...
yl)methyl)-5-methylthiazol-2-ylimino)methyl)benzene-1,2-diol (MOMMBD)

4.2.4. Synthesis of 4-((4-((5-mercapto-1,3,4-oxadiazol-2-yl)methyl)-5-methylthiazol-2-ylimino)methyl)-2,6-dimethoxyphenol (MOMMDP)

4.3. **Results and discussion**

4.3.1. Antioxidant activity
4.3.2. Antioxidant activity and corrosion inhibition
4.3.3. Mass loss measurements
4.3.4. Effect of temperature
4.3.5. Adsorption considerations
4.3.6. Electrochemical Impedance Spectroscopy (EIS)
4.3.7. Potentiodynamic polarization measurements
4.3.8. Surface analysis
4.3.9. FTIR studies

4.4. **Conclusion**

Literature Cited

CHAPTER-5: Synthesis and Corrosion Inhibition Efficiency of Piperidine Sulphonamides for Mild Steel in Hydrochloric Acid Solution

5.1. **Introduction**

5.2. **Synthesis of inhibitors**

5.2.1. Synthesis of tert-butyl 1-(2-chloro-5-fluoropyrimidin-4-yl)piperidin-4-yl carbamate
5.2.2. Synthesis of tert-butyl 1-(5-fluoro-2-(methylthio)pyrimidin-4-yl)piperidin-4-yl carbamate
5.2.3. Synthesis of 1-(5-fluoro-2-(methylthio)pyrimidin-4-yl)piperidin-4-amine
5.2.4. General method for the synthesis of piperidine sulphonamides
5.2.4.1. Synthesis of N-(1-(5-fluoro-2-(methylthio) pyrimidin-4-yl)piperidin-4-yl)-2,4,6-trimethylbenzenesulfonamide (FMPPTS) 137
5.2.4.2. Synthesis of N-(1-(5-fluoro-2-(methylthio) pyrimidin-4-yl)piperidin-4-yl)-3,4-dimethoxy benzene sulfonamide (FMPPDS) 137
5.2.4.3. Synthesis of N-(1-(5-fluoro-2-(methylthio) pyrimidin-4-yl)piperidin-4-yl)-3-methoxybenzene sulfonamide (FMPPMS) 137

5.3. **Results and discussion**

5.3.1. Electrochemical impedance spectroscopy (EIS) measurements 143
5.3.2. Potentiodynamic polarization measurements 146
5.3.3. Mass loss measurements 149
5.3.4. Effect of temperature 151
5.3.5. Adsorption isotherm and thermodynamic considerations 156
5.3.6. Scanning electron microscopy (SEM) 160

5.4. **Conclusion** 163

Literature Cited 164

CHAPTER-6: Synthesis of Pyrimidine Based Piperidines Sulphonamides as Novel Class of Anti Corrosive Agents: Chemical and Electrochemical Studies

6.1. **Introduction** 166

6.2. **Synthesis of inhibitors**

6.2.1 General method for the synthesis of piperidine sulphonamides 167
6.2.2 Synthesis of N-(1-(5-fluoro-2-(methylthio)pyrimidin-4-yl)piperidin-4-yl)-2,5-dimethoxybenzenesulfonamide (FMPPDBS) 167
6.2.3 Synthesis of N-(1-(5-fluoro-2-(methylthio) pyrimidin-4-yl)piperidin-4-yl)-3-methoxybenzenesulfonamide (FMPPMBS) 167
6.2.4 Synthesis of N-(1-(5-fluoro-2-(methylthio)pyrimidin-4-yl)piperidin-4-yl)-4-nitrobenzenesulfonamide (FMPPNBS)

6.3. **Results and discussion**

6.3.1. Electrochemical impedance spectroscopy measurements 168
6.3.2. Potentiodynamic polarization measurements 179
6.3.3. Mass loss measurements 181
6.3.4. Effect of inhibitors on the activation parameters of the corrosion process 181
6.3.5. Adsorption considerations 188
6.3.6. Scanning electron microscopy (SEM) 193
6.3.7. Quantum chemical calculations 194

6.4. **Conclusion**

Literature Cited 201

CHAPTER-7: Inhibition Performance and Adsorption Behaviour of Pterolobium Hexapetalum and Celosia Argentea Plant Extracts on Mild Steel in Industrial Water Medium

7.1. **Introduction** 204

7.2. **Results and discussion**

7.2.1. Effect of immersion time 206
7.2.2. Effect of temperature 207
7.2.3. Adsorption studies 214
7.2.4. Electrochemical impedance spectroscopy 220
7.2.5. Potentiodynamic polarization measurements 221
7.2.6. Antioxidant activity 224
7.2.7. Scanning electron microscopy (SEM) 224

7.3. **Conclusions** 225

Literature Cited 226
CHAPTER-8: Achyranthes Aspera and Plumeria Rubra Leaves Extracts as Corrosion Inhibitors for Mild Steel in Industrial Water Medium

8.1. Introduction

8.2. Results and discussion

- 8.2.1. Mass loss studies
- 8.2.2. Effect of immersion time
- 8.2.3. Effect of temperature
- 8.2.4. Adsorption isotherm
- 8.2.5. Potentiodynamic polarization studies
- 8.2.6. Electrochemical impedance spectroscopy (EIS)
- 8.2.7. Scanning electron microscopy (SEM)
- 8.2.8. Antioxidant activity and corrosion inhibition

8.3. Conclusions

Literature Cited

Reprints of the Research Publications