Chapter IV

Some special classes of groups and the wreath product

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Groups satisfying finiteness conditions and the wreath product</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Solvable groups and the wreath product</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Hypercentral groups, nilpotent groups and the wreath product</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Divisible groups and the wreath product</td>
<td>90</td>
</tr>
</tbody>
</table>
4.1. Groups satisfying finiteness conditions and the wreath product

If a group has a finite generating system, it is \textit{finitely generated}. If, further, it has a finite number of defining relations, it is \textit{finitely presented}. Baumslag (1961) has shown that if \(A \) and \(B \) are finitely presented groups, and \(B \) is finite, then the standard wreath product of \(A \) and \(B \) is a finitely presented group. We prove:

\textbf{4.1.1. Theorem.} If the set \(Y \) (and hence also \(B \)) is finite, then finite generation or finite presentation of the group \(A \) also implies that of the (general) wreath product \(AWrB (\approx AwrB) \).

\textbf{Proof.} Suppose \(Y \) (and hence also \(B \)) is finite and \(A \) is \textit{finitely generated}. Let \(K \) be a finite generating system of \(A \). Since an arbitrary element of \(A^Y \) is a finite product \(a_kx \), where \(a \in A \) and \(x \in Y \), the coordinate functions \(k_x \), where \(k \in K \), form a finite generating system of \(A^Y \). Thus \(A^Y \) is \textit{finitely generated}. And since an extension of a finitely generated group by a finitely generated group is also finitely generated (P. Hall, 1954, Lemma 1), it follows that \(AWrB \) is \textit{finitely generated}.
Next suppose that Y (and hence also B) is finite and A is finitely presented. Again let K be a finite generating system of A, with a corresponding finite generating system L of A^Y. Since a finite number of defining relations in A expressed in terms of the elements of K can yield only a finite number of defining relations in A^Y expressed in terms of the elements of L, we see that A^Y is also finitely presented. Now an extension of a finitely presented group by a finitely presented group is again finitely presented (P. Hall, 1954, Lemma 1). Hence $A\wr B$ is finitely presented. //

A (finitely generated) group is a Noetherian group if every ascending chain of distinct subgroups of it is finite.

4.1.2. Theorem. If A and B are Noetherian, then $A\wr B$ (and hence $A\wr B$) is also Noetherian.

Proof. Let A and B be Noetherian.

If possible, let A^Y be not Noetherian. Then there exists an infinite ascending chain of distinct subgroups of A^Y,

$$K_1 < K_2 < K_3 < \ldots$$
Choose any fixed element \(z \) in \(Y \). It then follows from Lemma 2.1.11 that there exist an infinite set of subgroups of \(A \),

\[U_1, U_2, U_3, \ldots \]

where \(U_i \) is the subgroup of \(A \) formed by the images of \(z \) under the elements of the subgroup \(K_i \) of \(A^Y \). If \(z^f \in U_i \), \(f \in K_{i+1} \) (since \(K_i \) is contained in \(K_{i+1} \)), and so \(z^f \in U_{i+1} \). Thus,

\[U_1 < U_2 < U_3 < \ldots \]

This contradicts the hypothesis that \(A \) is Noetherian. It follows that \(A^Y \) is Noetherian.

Since an extension of a Noetherian group by a Noetherian group is again Noetherian (P. Hall, 1954, Lemma 1), \(A \wr B \) is also Noetherian. //

A group is periodic if every element of it is of finite order. Some special types of periodic groups are locally finite groups, groups of finite exponent and p-groups.

A group is locally finite if every finitely generated subgroup of it is finite. A group is of finite exponent if
there is a positive integer \(n \) such that the equation \(x^n = 1 \) is a law in the group, and the smallest such integer \(n \) is the exponent of the group. A group is a p-group if every element of it has order a power of a prime \(p \).

4.1.3. Theorem. If \(A \) and \(B \) are periodic, then the restricted wreath product \(A \wr_r B \) is periodic.

If, in particular, \(A \) is of finite exponent, then the wreath product \(A \wr_r B \) is also periodic.

The proof is immediate from the following three lemmas.

4.1.4. Lemma. If \(A \) is periodic, so also is \(A^{(Y)} \).

Proof. Suppose \(A \) is periodic.

An arbitrary element of \(A^{(Y)} \) is a product of a finite number of coordinate functions \(a_x \), where \(a \in A \) and \(x \in Y \). Let \(m \) be the lowest common multiple of the orders of the elements \(a \). Since \(A \) is periodic, \(m \) is a finite positive integer. We get

\[
(x a_x)^m = x (a_x)^m = x (a^m)_x = 1,
\]
and so \(A^{(Y)} \) is periodic. //
4.1.5. **Lemma.** If A is of finite exponent, so also is A^Y.

Proof. Suppose A is of finite exponent n. If $f \in A^Y$, then for every $y \in Y$ we get

$$y(f^n) = (y^f)^n = 1.$$

Hence $f^n = 1$, which shows that A^Y is of finite exponent. //

4.1.6. **Lemma.** An extension of a periodic group by a periodic group is also periodic.

Proof. Let G be an extension of a periodic group H by a periodic group K.

If possible, let G have an element g of infinite order. Suppose that under the given isomorphism $\alpha : G/H \to K$ the coset gH has the image k. Since K is periodic k has a finite order m, say. Then under α we have the assignment $g^mH = 1$, where 1 is the identity of K. Since α is an isomorphism we then get $g^mH = H$, the identity of G/H.

Here g^m cannot have a finite order (otherwise the same would be true of g), and H is periodic. Hence $g^m \not\in H$.
and so \(g^n H \neq H \).

The contradiction establishes the lemma. //

4.1.7. Theorem. If \(A \) is finite and \(B \) locally finite, then both \(A \wr B \) and \(A \wr_r B \) are locally finite.

Proof. Suppose \(A \) is finite. Then \(A^Y \) is locally finite (B. H. Neumann, 1960\(^b\), Lemma 5.4).

An extension of a locally finite group by a locally finite group is again locally finite (Kurosh, 1960, Vol.2, p.153 and B. H. Neumann, 1960\(^a\), p.207). Hence it follows that if here \(B \) is locally finite, then \(A \wr B \) is locally finite.

Since a subgroup of a locally finite group clearly possesses local finiteness, the proof for the restricted wreath product \(A \wr_r B \) is now immediate. //

4.1.8. Theorem. If \(A \) and \(B \) are of finite exponent, then so also are \(A \wr B \) and \(A \wr_r B \).

Proof. Let \(A \) and \(B \) be of finite exponent. Then by Lemma 4.1.5 \(A^Y \) is of finite exponent.
An extension of a group of finite exponent by a group of finite exponent is again of finite exponent (B. H. Neumann, 1960, p.479). Hence the wreath product $A \wr B$ is of finite exponent under the condition stated.

And since a subgroup of a group of finite exponent is clearly of finite exponent, the restricted wreath product $A \wr_r B$ is also of finite exponent in the case under consideration.

4.1.9. Theorem. If A and B are p-groups, the restricted wreath product $A \wr_r B$ is a p-group.

If further A is of finite exponent then $A \wr_r B$ is also a p-group.

Proof. Suppose A is a p-group. Then the order of each element of A is a power of p. Since an arbitrary element of A^Y is a product of a finite number of coordinate functions $a_x^y (a \in A, x \in Y)$, we can calculate the lowest common multiple of the orders of the a's. If this multiple is say p^l, then $(x_{a_x})^{p^l} = 1$. This shows that A^Y is a p-group.

Suppose further that A is of finite exponent p^n. If $f \in A^Y$, then for every $y \in Y$ we get
SEC. 4.1. GROUPS SATISFYING FINITENESS CONDITIONS

Thus A^Y is also a p-group in this case.

Since an extension of a p-group by a p-group is again a p-group (Scott, 1964, 6.1.2) the theorem follows. //

Theorem 4.1.9 immediately yields

4.1.10. Corollary. If A and B are p-groups and B is regular and infinite, then the restricted wreath product $A \wr_r B$ is a non-nilpotent p-group.

If further A is of finite exponent, then $A \wr_r B$ is also a non-nilpotent p-group.

Proof. If B is regular and infinite, $A \wr_r B$ has trivial centre (Corollary 2.4.14) and is therefore non-nilpotent. Then Theorem 4.1.9 completes the proof of the first part of the corollary.

Since a subgroup of a nilpotent group is nilpotent, $A \wr_r B$ is non-nilpotent when $A \wr_r B$ is non-nilpotent. The second part of the corollary then follows. //

(The non-nilpotency of the restricted standard wreath product $A \wr_r B$ (a p-group), when A and B are p-groups and B is infinite, was proved by Baumslag (1959).)
4.2. Solvable groups and the wreath product

We shall examine the effect of the solvability of the groups A and B on the wreath product $A \wr B$. We note.

4.2.1. Lemma. If the groups A and B are solvable of lengths 1 and m respectively, then $A \wr B$ and $A^r B$ are both solvable groups of length $< 1+m$.

Proof. Let A and B be solvable of lengths 1 and m respectively. Then A^Y and $A^{(Y)}$ are solvable of length < 1 (Schenkman, 1965, VII.1.a, (vii) and (viii)).

Again an extension of a solvable group of length 1 by a solvable group of length m is a solvable group of length $< 1+m$ (Schenkman, 1965, VII.1.d). Hence the lemma.

We get the following two more precise results (which have been proved by McCarthy (1969) for the particular case of the standard wreath product).

4.2.2. Theorem. If A is a solvable group of length 1 and the group B is abelian, then the wreath product $A \wr B$ is a solvable group of length $1+1$.

Proof. Let A be solvable of length 1 and B abelian. Then by Lemma 4.2.1 $A \wr B$ is solvable of length $< 1+1$. We have
then only to show that the solvability length of $A\varPi B$ is $\geq 1-1$.

Take a fixed $b \in B$, $b \neq 1$, and a fixed $x \in Y$, and let $x^b = z$. Then, for every $a \in A$, we get in the derived group $(A\varPi B)'$ a commutator

$$c_a = a^{-1}_x b^{-1}_x a_x b = a^{-1}_x (x^b)$$

$$= a^{-1}_x a_z.$$

Let G be the subgroup of the derived group $(A\varPi B)'$ generated by the set of commutators c_a, $a \in A$. Then an arbitrary element of G is a finite product $c_a \cdots c_k$, where $a, \ldots, k \in A$. We get

$$z^{c_a \cdots c_k} = z^{c_a} \cdots z^{c_k} = a \cdots k.$$

Thus we get a map

$$\alpha : G \to A, \quad c_a \cdots c_k \mapsto a \cdots k.$$

It is at once seen that α is onto and homomorphic, and so A is an epimorphic image of G.

Since G is a subgroup of the solvable group $AWrB$ and A is solvable of length 1, it then follows that G is solvable of length ≥ 1. Hence the derived group $(AWrB)'$, which contains G, is also solvable of length ≥ 1.

This shows that $AWrB$ has solvability length $\geq l+1$, and is thus solvable of length $1+1$. //

We get the following general result (which is also known for the permutational wreath product (Burns, 1968)).

4.2.3. Theorem. If A is a solvable group of length 1 and the group B is solvable of length m, then the wreath product $AWrB$ is a solvable group of length $1+m$.

Proof. Suppose A and B are solvable of lengths 1 and m respectively. Then by Lemma 4.2.1 $AWrB$ is solvable of length $\leq 1+m$. We have then to show that the solvability length is $\geq 1+m$.

In the group B and its successive derived groups $B(1)$, $B(2)$, ..., $B^{(m-1)}$ take fixed elements $b_1 \in B$,

$b_2 \in B(1)$, ..., $b_m \in B^{(m-1)}$ such that $b_1 \notin B^{(1)}$,

$b_2 \notin B^{(2)}$, ..., $b_{m-1} \notin B^{(m-1)}$ and $b_m \neq 1$. Take a fixed
x \in Y and let \(x^{(b_1)} = z \). We get for any \(a \in A \),

\[
ax^{-1}b_1^{-1}axb_1 = ax^{-1}(ax)^{b_1} = ax^{-1}ax^{-1}b_1.
\]

For simplicity put

\[
\begin{align*}
(a_1, b_1) & = ax^{-1}a_1, \\
(a_2, b_2) & = ax^{-1}a_2, \quad \ldots, \\
(a_{x^1b_1b_2}, b_1b_2) & = ax^{-1}a_1, \quad \ldots, \quad .
\end{align*}
\]

Then the commutator of \(ax \) and \(b_1 \) is \(ax^{-1}a_1 \),

the commutator of \(ax, b_1 \) and \(b_2 \) is

\[
ax^{-1}a_1 ax^{-1}a_1 b_2 = ax^{-1}(ax)^{-b_2}(a_1)^{b_2}
\]

\[
= ax^{-1}a_1^{-1}a_2^{-1}a_12 \quad \text{(by Lemma 2.1.12)},
\]

the commutator of \(ax, b_1, b_2 \) and \(b_3 \) is

\[
ax^{-1}a_1 ax^{-1}a_1 a_2 ax^{-1}a_1 a_2 a_12 b_3
\]

\[
= ax^{-1}a_1 ax^{-1}a_1 a_2 a_12 b_3 (a_3)^{-b_3(a_1, a_2)^{-b_3(a_2, a_12)^{-b_3(a_12, b_3)}
\]

\[
= ax^{-1}a_1 a_2 a_3 a_12 a_13 a_23 a_123,
\]
Similarly, the commutator of a_x^{-1} and b_1 is $a_x a_1^{-1}$, the commutator of a_x^{-1}, b_1 and b_2 is $a_x^{-1} a_1 a_2 a_1^{-1} a_2$, the commutator of a_x^{-1}, b_1, b_2, and b_3 is $a_x a_1^{-1} a_2^{-1} a_3^{-1} a_1 a_2 a_3^{-1} a_1 a_2 a_3^{-1} a_1 a_2 a_3^{-1}$.

Let c_a be the commutator of a_x, b_1, b_2, ..., b_m if m is odd and the commutator of a_x^{-1}, b_1, b_2, ..., b_m if m is even. Then c_a is an element of the derived group $(A \wr B)^{(m)}$.

Let G be the subgroup of $(A \wr B)^{(m)}$ generated by the set of commutators c_a, $a \in A$. For any a, ..., $k \in K$ we get

$$(c_a \ldots c_k) = a \ldots k,$$

whether m is odd or even. Thus we get an epimorphism

$$a : G \to A, c_a \ldots c_k \to a \ldots k.$$

Since G is a subgroup of the solvable group $A \wr B$ and A is solvable of length 1, it follows that G is solvable of length ≥ 1. Hence the derived group $(A \wr B)^{(m)}$ containing G is also solvable of length ≥ 1.
We infer that $AWrB$ has solvability length $> 1+m$.
Thus $AWrB$ is a solvable group of length $1+m$.

A finite solvable group all whose Sylow subgroups are abelian is an A-group (P. Hall, 1940). Carter (1962, p.555) has given a method for constructing such groups with the help of the wreath product concept. The result contained in the following lemma is a little more general.

4.2.4. Lemma. Let p_1, \ldots, p_{r+1} be distinct primes.
If G_{r+1} is a finite abelian p_{r+1}-group and G_i are finite abelian p_i-groups of permutations on sets X_i, $i = 1, \ldots, r$, respectively, then the repeated wreath product

$$G = G_{r+1} \text{Wr}(G_r \text{Wr}(\ldots(G_2 \text{Wr} G_1)\ldots))$$

is an A-group.

Proof. Let the repeated wreath product

$$P_k = G_k \text{Wr}(\ldots(G_2 \text{Wr} G_1)\ldots)$$

be the permutation group on the product set Z_k, $k = 2, \ldots, r$.
Then,

$$|P_2| = |G_2|^{\mid X_1\mid} |G_1|, \quad |P_3| = |G_3|^{\mid Z_2\mid} |P_2|,$$

\ldots \ldots
We knew that the base group is a normal subgroup of the wreath product. Hence,
\[|P_r| = |G_r|^{|Z_{r-1}|} |P_{r-1}|, \quad |G| = |G_{r+1}|^{|Z_r|} |P_r|. \]

Further, the primes \(p_{r+1}, p_r, p_3, p_2 \) do not divide respectively \(|P_r|, |P_{r-1}|, \ldots, |P_2| \) and \(|G_1| \).

It follows that the subgroups 4.2.5 along with the subgroup \(G_1 \) form a complete set of Sylow subgroups of \(G \). And clearly all these subgroups are abelian. //

4.3. Hypercentral groups, nilpotent groups and the wreath product

If \(G \) is any (nontrivial) group we can always obtain a series of characteristic subgroups of \(G \),
\[1 = Z_0 \trianglelefteq Z_1 \trianglelefteq Z_2 \trianglelefteq \ldots \trianglelefteq Z_i \trianglelefteq \ldots, \]
such that each factor group \(Z_{i+1} / Z_i \) is the centre of the factor group \(G/Z_i \).
It is the upper central series of G.

If there exists an ordinal α such that $G = Z_\alpha$, then G is a hypercentral group (or a ZA-group). If α is the first ordinal such that $G = Z_\alpha$, then α is the length of G.

It is obvious from the condition 4.3.1 that a hypercentral group has a nontrivial centre, and a group G is hypercentral if and only if every nontrivial homomorphic image of G has a nontrivial centre.

A hypercentral group of finite length is a nilpotent group.

Clearly a subgroup of a hypercentral group is hypercentral and a subgroup of a nilpotent group is nilpotent.

We shall obtain necessary conditions such that a wreath product may be hypercentral or nilpotent.

4.3.2. Theorem. If the restricted wreath product $A \wr_r B$ is hypercentral and the permutation group B is regular, then A is a hypercentral p-group and B is a finite p-group for the same prime p.
If, in particular, $A \cap B$ is nilpotent, then A is a nilpotent p-group of finite exponent.

For the proof we shall need the following result (an analogue of Lemma 3.1 of Liebeck, 1962).

4.3.3. Lemma. Let $a \in A$, $b \in B$, $x \in Y$, and for $m = 1, 2, \ldots$ denote a simply by a_m.

Then the commutator c_m of a_x, b, b, \ldots to m's is the product

$$a_x^{(-1)}a_i \ldots a_x^{(-1)}a_1^{m+1}(m) \ldots \ldots \ldots a_x^{(-1)}a_m^{m}$$

where $\binom{m}{i}$ are binomial coefficients.

Proof. Making use of the calculations for the different commutators in the proof of Theorem 4.2.3 and putting $b_1 = b_2 = \ldots = b$ we see that the commutator of a_x and b is $a_x^{-1}a_1$, the commutator of a_x, b and b is $a_x a_1^{-2}a_2$. Thus the lemma is true for $m = 1$ and $m = 2$.

Now suppose that the lemma is true for a particular positive integer m. Then we get
Thus the lemma is true for \(m+1 \), and so it follows that it is true for all positive integral values of \(m \).

Proof of Theorem 4.3.2. Suppose \(\text{AwrB} \) is hypercentral and \(B \) is regular.

It immediately follows that \(A \) and \(B \) are hypercentral.

Since \(\text{AwrB} \) is hypercentral, it has a nontrivial centre. It follows from Corollary 2.4.14 (\(B \) being regular) that \(B \) is finite.

We know that in a hypercentral group elements of relatively prime orders commute (Schenkman, VI.3.j). But commutativity does not hold, in general, in the wreath product (Corollary 2.4.2). It follows that \(A \) and \(B \) are p-group for the
Suppose \(\text{AwrB} \) is nilpotent. Then, as above, \(A \) is a nilpotent \(p \)-group. If possible, let \(A \) be not of finite exponent.

Since \(B \) is finite, every element of it has finite order. Let \(b \in B \) be of order \(t \) and \(p \) be any prime greater than \(t \) and \(n \), where \(n \) is the class of nilpotency of \(\text{AwrB} \). Since \(A \) is not of finite exponent it possesses an element \(a \) of order \(> 2^p \).

By Lemma 4.3.3 the commutator \(c_p \) of \(a_x, b, b, \ldots \) to \(p \) \(b \)'s is

\[
(a_x)^{(-1)^p} \ldots (a_i)^{(-1)^{p+i}} (a_p)^{p}.
\]

Hence \(c_p \in A(Y) \), and so \(c_p \) is contained in \(\text{AwrB} \).

Here \(\text{AwrB} \) is nilpotent of class \(n \), and \(p > n \).

It follows that \(c_p = 1 \) (Kurosh, 1960, Vol.II, p.214).

Since \(p > t \), there exists a positive integer \(s \) such that \(s t < p < (s+1) t \). We get

\[
\left(x_{(b^t)} \right)^{a_t} = a_x.
\]
and similarly,

\[a_{2t} = a_{3t} = \cdots = a_{st} = a_x. \]

Hence the exponent of \(a_x \) in \(e \) is

\[e = (-1)^P + (-1)^{P+t} \binom{P}{t} + (-1)^{P+2t} \binom{P}{2t} \]

\[+ \cdots + (-1)^{P+st} \binom{P}{st} \]

\(\neq 0 \) (for \(e = (-1)^P \) is clearly a multiple of \(p \)).

Also,

\[|e| < |(-1)^P (1+1)^P| = 2^P. \]

Since \(a \) is of order \(> 2^P \) we then see that \(a^e \neq 1 \). Hence, \((a_x)^e \neq 1 \); and so the commutator \(c_p \neq 1 \), a contradiction.

It follows that \(A \) is of finite exponent under the conditions stated. //

The following two results are now immediate.

4.3.4. Corollary. If the wreath product \(A \wr B \) is hypercentral and the permutation group \(B \) is regular, then \(A \) is a hypercentral \(p \)-group and \(B \) is a finite \(p \)-group for the same prime \(p \).
If, in particular, $A \wr B$ is nilpotent, then A is a nilpotent p-group of finite exponent.

For if $A \wr B$ is hypercentral or nilpotent, so also is $A \wr B$. //

4.3.5. Corollary. If either of $A \wr B$ or $A \wr B$ is hypercentral, the two coincide.

For if $A \wr B$ or $A \wr B$ is hypercentral, B is finite—whence Y is finite, and so $A \wr B = A \wr B$. //

To obtain sufficient conditions such that a wreath product may be hypercentral or nilpotent we shall make use of the following lemma due to Wiegold (1962, Lemma 2.1):

4.3.6. Lemma. Let G be a group generated by a normal subgroup N and a subgroup B such that G/N is a finite p-group of class k and order δ, and the commutator subgroup of N and B is a p-group.

(i) If now N is a hypercentral group of length ω, then G is a hypercentral group of length $\leq \omega x + k$, where ω is the first infinite ordinal.

(ii) And if N and B are nilpotent of classes d and e respectively and the commutator subgroup of N and B is of
exponent p^s, then G is nilpotent of class $\leq d s(\delta-1) + \max (d, e)$.

We now get

4.3.7. Theorem. Let A be a hypercentral p-group of length x and the group B a finite p-group of class k (and hence Y finite). Then the wreath product $A \Wr B (= A \wr B)$ is a hypercentral p-group of length $\leq bx + k$.

If, in particular, A is a nilpotent p-group of class c and finite exponent p^r and B is of order δ, then $A \Wr B (= A \wr B)$ is a nilpotent p-group of class $\leq cs(\delta-1) + \max (c, k)$.

Proof. Let B be a finite p-group of class k and order δ.

We know that A^Y is a normal subgroup of $A \Wr B$, and $A \Wr B$ is generated by A^Y and B. The factor group $(A \Wr B)/A^Y$ is isomorphic to B, and is therefore a finite p-group of class k and order δ.

Again, an arbitrary element of the commutator subgroup of B and A^Y is a product of commutators $b^{-1} f^{-1} bf$ where $b \in B$ and $f \in A^Y$. Since the commutator $b^{-1} f^{-1} bf$ is the product $f^{-b} f$, it is contained in the base group A^Y. Hence we know that the commutator subgroup of B and A^Y is actually a subgroup of A^Y.
Now let A be a hypercentral p-group of length x. It is easily seen that A^X is a hypercentral group of length $\leq x$. Also by Theorem 4.1.9 A^X is a p-group and so the commutator subgroup of B and A^X is a p-group. Then the first part of our theorem follows from Lemma 4.3.6(i) on taking $N = A^X$ and $G = A \wr B$.

Next suppose A is a nilpotent p-group of class c and exponent p^s. Then A^X is nilpotent p-group of class d, $\leq c$ (Schenkman, 1965, VI.1.5(v) and Theorem 4.1.9 and of exponent $\leq p^s$ (Lemma 4.1.5). It follows that the commutator subgroup of B and A^X is a p-group of exponent $\leq p^s$. Suppose it is of exponent p^r, $r \leq s$. Then by the second part of Lemma 4.3.6, $A \wr B$ is nilpotent of class

$$\leq d \cdot r \cdot (\delta - 1) + \max (d, k)$$

$$\leq c \cdot s \cdot (\delta - 1) + \max (c, k).$$

4.4. Divisible groups and the wreath product

For his proof of Neumann's theorem, 'Every group can be embedded in a divisible group', Baumslag (1959) used the following result (see Lemma 4.1): If A is an arbitrary group and B a cyclic group of order n, then A can be embedded in the
standard wreath product $A \wr B$ such that every element of A has nth root in $A \wr B$.

We get the following generalization of Baumslag's lemma for the wreath product $A \wr B$.

4.4.1. Lemma. If B is a finite cyclic regular permutation group of order n, every element of the diagonal A^0 has an nth root in the wreath product $A \wr B$.

Proof. Let a° be an arbitrary element of A^0 and B be generated by b. We get for any given x in Y,

$$(ba_x)^n = (a_x)^{b^{n-1}} \cdots (a_x)^b a_x$$

$$= a^{(x(b^{n-1}))} \cdots a^{(x^b)} a_x.$$

Since B is regular,

$$x^{(b^{n-1})}, \ldots, x^b \neq x.$$

Hence,

$$(ba_x)^n = (a_x) x^x = a.$$

Next let $y \in Y$, $y \neq x$. Since B is regular, one and only one of the elements $x^{(b^{n-1})}, \ldots, x^b$ is y.
Hence,
\[(ba_x)^n = y^y = a.\]

Thus we get for every \(y \in Y\), \((ba_x)^n = a\).

It follows that \(a^y = (ba_x)^n\), as stated. //

4.4.2. Note. We see that the condition that \(B\) is regular is necessary:

Let \(Y\) be the set of numbers 1, 2, 3, 4, 5 and \(b\) the permutation \((1 2 3)(4 5)\). Then

\[
\begin{align*}
b^2 &= (1 3 2), \\
b^3 &= (4 5), \\
b^4 &= (1 2 3), \\
b^5 &= (1 3 2)(4 5),
\end{align*}
\]

and so the group \(B\) is not regular.

We see that

\[
(ba_1)^6 = (a_1)^b^5 (a_1)^b^4 (a_1)^b^3 (a_1)^b^2 (a_1)^b
\]

\[= a_3 a_2 a_1 a_3 a_2.\]

Then \(2(ba_1)^6 = a^2\), and so \((ba_1)^6 \neq a^6\). //
The following result shows that divisibility of the factors is inherited by the wreath product and the restricted wreath product.

4.4.3. Lemma. If \(A \) and \(B \) are divisible groups, so also are \(A \wr B \) and \(A \triangleright B \).

Proof. Let \(b f \in A \wr B \), \(b \in B \) and \(f \in A^Y \), and \(n \) a given integer.

Since \(B \) is divisible, there exists an element \(c \) in \(B \) such that \(c^n = b \). We shall now construct \(g \in A^Y \) such that \((cg)^n = bf \).

For any \(g \in A^Y \) we get

\[
(cg)^n = c^n g(c^{n-1}) g(c^{n-2}) \ldots g^e g.
\]

Put \(c^{-1} = p \). Then for every \(y \in Y \),

\[
y(g(c^{n-1}) g(c^{n-2}) \ldots g^e g) = (y^{p^{n-1}}) g(y^{p^{n-2}}) g \ldots (y^p) g y g.
\]

We now construct our required \(g \) as follows: If \(y^e = y \), \(y^g \) is chosen such that

\[
(y^g)^n = y^f.
\]
(Since A is divisible this is always possible.)

If $y^c \neq y$, we choose y^g, $(y^p)^g$, ..., $(y^{p^{n-2}})^g$ arbitrarily in A and $(y^{p^{n-1}})^g$ such that the product of all these chosen elements is y^f.

Then for every $y \in Y$ and for the g constructed above we get

$$y(g^{c^{n-1}} g^{c^{n-2}} \ldots g^c g) = y^f.$$

Hence, $g^{c^{n-1}} g^{c^{n-2}} \ldots g^c g = f$, and so $(cg)^n = bf$, as stated.

It is obvious that if $f \in A^{(Y)}$, then the element g as constructed above lies in $A^{(Y)}$. Hence the result also holds for $A_{wr}B$. //