Chapter - 2

Measure of Associativity for an Inexact Groupoid of Degree one.

2.1. Introduction

The set of transformations from a singleton set into an ordered subset of unit interval is closed with respect to the operation, absolute difference and termed as inexact groupoid of degree one and is denoted by E but it is not associative. The main purpose of this chapter is to introduce the measure of associativity for E. This gives a measure by which E deprives of being a group. Material incorporated in this chapter is published in the Mathematical Gazette, volume 80, Number 488, July, 1996.

2.1.1 An overview on measure of commutativity -

We know that the measure of commutativity for a group is defined by Joseph as a ratio between the number of commutating ordered pairs and the square of the order of the group. This ratio is a positive fraction lying between 0 and 1. If this ratio is equal to one, then the group is commutative and otherwise it is non-commutative.

On the otherhand, there is another method introduced by Machale for the determination of Joseph measure of a finite group. He proved that the Joseph measure of a finite group depends upon the number of conjugacy classes of the finite group. Therefore to find the measure of commutativity for a non-commutative finite group, it will be sufficient to determine the number of conjugate classes of the group. For a finite group G, if K(G) be the number of conjugate classes of G, then Joseph measure of commutativity for G is the ratio between K(G) and order of G. If H be a subgroup of a finite group G, then J(G) ≤ J(H), where J(G) and J(H) denote the Joseph measure of commutativity for G and H respectively.
If G be a non - commutative finite group and p be the least prime number and p divides the order of G, then $J(G) \leq \frac{(p^2 + p - 1)}{p^3}$. If $Z(G)$ be the centre of G, and the order of $G/Z(G)$ is equal to p^2, then $J(G) = \frac{(p^2 + p - 1)}{p^3}$.

One of the most interesting results of Joseph measure for a non - commutative finite group G is $J(G) \leq 5/8$.

In conformity with the Joseph measure of commutativity for a finite group, we introduce the notion of measure of associativity for an inexact groupoid E of degree one. The measure of associativity for E depends upon the number of associative triples (a, b, c) of the elements of E, where the triple (a, b, c) satisfying $(a \Delta b) \Delta c = a \Delta (b \Delta c)$ is called associative. The measure of associativity for an inexact groupoid E of degree one is the ratio of the number of associative triples in E and the cube of the order of E. If this ratio is equal to one then the inexact groupoid E is associative and otherwise it is non - associative.

2.2 Ordered subset of unit interval.

As a partition of a closed interval $[0, 1]$, we consider a finite ordered subset $A = \{0, h, 2h, \ldots, (m - 1)h = 1\}$, where m is a positive integer.

Clearly A is closed under the operations, absolute difference, maximum and minimum but it is not closed with respect to addition, subtraction and multiplication operations.

2.3. Inexact sets

2.3.1. Definition:

Let $X = \{x_0\}$ be an arbitrary singleton set and $A = \{0, h, 2h, \ldots, (m - 1)h = 1\}$ be an ordered sub-set of $[0, 1]$. Then the family of fuzzy subset A^t denoted by E is defined as inexact set. The elements of E can be determined by the following mappings.

The co-efficient set of h in A is denoted by A'. So, $A' = \{0, 1, 2, \ldots, m - 1\}$.
Taking \(m \) as base and elements of \(A' \) as digits, another set \(P = \{0, 1, 2, \ldots, m - 1\} \) is determined and the elements of \(P \) can be expressed as \(m \)-adic form in one place as given below:

\[
0 = (0)_{m}, 1 = (1)_{m}, 2 = (2)_{m}, \ldots, m - 1 = (m - 1)_{m}
\]

Consider the mappings \(f : A \rightarrow P \) and \(g : P \rightarrow E \) such that \(f(rh) = r \) and \(g(r) = \{(x_0, rh)\} \) for all \(rh \in A \).

Since \(f \) and \(g \) are one-one and onto mappings, so \(gof \) is also one-one and onto mapping. The composite mapping

\[
gofof (rh) = g (f (rh))
\]

\[
= g (r)
\]

\[
= \{(x_0, rh)\}
\]

The element \(\{(x_0, rh)\} \) i.e the fuzzy subset is denoted by \(U_r \).

Thus \(U_r = \{(x_0, rh)\} = \{(x_0, u_r (x_0))\} \). The image points of the elements of \(A \) are the elements of \(E \). The image points of the elements \(0, 1h, 2h, \ldots, (m - 1)h \) are \(u_0, u_1, u_2, \ldots, u_{m-1} \) respectively.

Thus \(E = \{ u_0, u_1, u_2, \ldots, u_{m-1} \} \).

2.3.2. Definition:

Let \(U_p = \{(x_0, ph)\} \) and \(U_q = \{(x_0, qh)\} \) be two elements of inexact set \(E \), then \(U_p \) is said to be less than or equal to \(U_q \) denoted by \(U_p \leq U_q \) if \(p \leq q \) i.e. \((p)_{m} \leq (q)_{m} \).

The elements of \(E \) can be written as \(u_0 < u_1 < u_2 < \ldots < u_{m-1} \). The elements \(u_0 = \{(x_0, 0)\} \) and \(u_{m-1} = \{(x_0, (m - 1)h = 1)\} \) are respectively infimum and supremum of \(E \).

2.3.3. Definition:

The degree of an inexact set is defined as the number of elements of the set \(X \). The degree of the inexact set \(E \) is denoted by \(d(E) \).
2.3.4 Definition:
The absolute difference denoted by Δ of two elements u_r and u_s of E is defined as

$$u_r \Delta u_s = \{(x_0, |u_r(x_0) - u_s(x_0)|)\},$$

where $u_r = \{(x_0, rh)\}$ and $u_s = \{(x_0, sh)\}$.

2.4 Inexact groupoid of degree one.

2.4.1 Definition:
If $u_r \Delta u_s \in E$ for all $u_r \in E$, $u_s \in E$, then (E, Δ) is defined as inexact groupoid of degree one.

For brevity, we shall omit u, thus u_r and u_s become r and s respectively. Then $E = \{0, 1, 2, \ldots, m-1\}$

Let $r = \{(x_0, r(x_0))\}$ and $s = \{(x_0, s(x_0))\}$ be any two arbitrary elements of E, then

$$r \Delta s = \{(x_0, |r(x_0) - s(x_0)|)\} \in E,$$

since $r(x_0) \in A$, $s(x_0) \in A \Rightarrow |r(x_0) - s(x_0)| \in A$ by 2.2.

Thus $r \in E, s \in E \Rightarrow r \Delta s \in E$. Hence E is an inexact groupoid of degree one and it is denoted by (E, Δ).

A composite table of inexact groupoid (E, Δ) is as follows:

<table>
<thead>
<tr>
<th>Δ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>m - 4</th>
<th>m - 3</th>
<th>m - 2</th>
<th>m - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>\ldots</td>
<td>m - 4</td>
<td>m - 3</td>
<td>m - 2</td>
<td>m - 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>\ldots</td>
<td>m - 5</td>
<td>m - 4</td>
<td>m - 2</td>
<td>m - 1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>m - 6</td>
<td>m - 5</td>
<td>m - 3</td>
<td>m - 2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>m - 7</td>
<td>m - 5</td>
<td>m - 3</td>
<td>m - 2</td>
</tr>
</tbody>
</table>

\ldots

m - 4	m - 5	m - 6	m - 7	\ldots	0	1	2	3
m - 3	m - 4	m - 5	m - 6	\ldots	1	0	1	2
m - 2	m - 3	m - 4	m - 5	\ldots	2	1	0	1
m - 1	m - 2	m - 3	m - 4	\ldots	3	2	1	0

Table - 1
From the above table it is clear that

i) \((E, \Delta)\) is commutative i.e. \(r \Delta s = s \Delta r\), for all \(r, s \in E\).

ii) \((E, \Delta)\) is not associative i.e. for some \(r, s, t \in E\), \((r \Delta s) \Delta t \neq r \Delta (s \Delta t)\).

2.5. Measuring Associativity in a Groupoid of Natural Numbers

The absolute difference \(*\) of natural number \(a, b\) is defined by
\[a * b = |a - b|. \]
Then (for all integers \(n \geq 1\)) \(*\) is a closed law of composition on the set \(N_n = \{0, 1, 2, \ldots, n - 1\}\) and \((N_n, *)\) is a commutative but (for \(n > 2\)) not associative: e.g. \((1 * 1) * 2 = 0 * 2 = 2\) while \(1 * (1 * 2) = 1 * 1 = 0\). So \((N_n, *)\) is a commutative non-associative groupoid. It is interesting [see(1)] to consider the measure of its associativity, defined to be \(K(N_n) / n^3\), where \(K(N_n)\) is the number of associative triples among the total of \(n^3\) that can be formed from elements of \(N_n\). Clearly \(0 < K(N_n) / n^3 < 1\) when \(n > 2\).

For illustration we first consider \((N_3, *)\) whose composition table is Table 2. From this we can construct Table 3 giving \((i * j) * k\) for all \(i, j, k\) in \(N_3\).

When \((i * j) * k \neq i * (j * k)\) we bracket the entry for \((i * j) * k\). Because the commutativity of \(*\) gives \(i * (j * k) = (k * j) * i\), which can read off from Table 3 together with \((i * j) * k\), the comparison is easily made. We see that 25 of the 27 triples are associative, so \(K(N_3) / 8 = 25 / 27\) is the associativity measure for \((N_3, *)\).

Next we look at \((N_4, *)\). The reader may construct the composition table and then check Table 4 for \((i * j) * k\). We find 54 associative triples among the 64, so the measure is \(54/64 = 27/32\).

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2
Let us now consider the number \(l(N_n) \) of non-associative triples of elements from \(N_n \).

From Tables 3, 4 we have seen that \(l(N_3) = 2 \) and \(l(N_4) = 10 \) - an increase of 8; i.e. \(l(N_4) - l(N_3) = 8 \). Thus \(l(N_4) = 2 + 8 = 2(1^2 + 2^2) \). Likewise, the reader may check that from \(N_4 \) to \(N_5 \) there is an increase of 18; i.e. \(l(N_5) - l(N_4) = 18 \), so \(l(N_5) = 2(1^2 + 2^2 + 3^2) \). By considering systematically the triples introduced when we pass from \(N_n \) to \(N_{n+1} \) we will prove similarly the following generalisation of these results

\[
 l(N_{n+1}) - l(N_n) = 2(n - 1)^2 \quad (n > 1) \tag{1}
\]

Recall that \(N_{n+1} = \{0, 1, 2, \ldots, n\} \). For brevity we shall omit *; thus \((i * j) * k, i * (j * k)\) become \((ij)k, i(jk)\) respectively.
By commutativity of * we have \((ij)k = (ji)k = k (ji)\), and similarly (as noted earlier) \((jk) = (kj)\), so \((ij)k \neq i(jk)\) if and only if \((kj)i \neq k (ji)\). Thus \((i, j, k)\) is non-associative if and only if its "reverse", \((k, j, i)\) is non-associative so we need consider only those \((i, j, k)\) with \(i \leq k\). We can exclude immediately the case \(k = i\) because (from above) \((ij)i = i(ji)\); and then also the case \(k = j\) because \(i < k = j\) gives \((ij)i = (j - i)j = j - (j - i) = i = i0 = i(ij)\). If at least one of \(i, j, k\) is 0 then \((i, j, k)\) is associative: for example, \((0)j = jk = 0(jk)\). So henceforth we can confine our search for non-associative triples to those with \(i, j, k\) non-zero and \(i < k, j \neq k\).

Passing from \(N_n\) to \(N_{n+1}\) (\(n > 1\)) introduces new triples, of which (by the preceding paragraph) only those of types \((i, j, k)\) with \(i, j, k\) non-zero in \(N_{n+1}\) need consideration. Moreover \(i \neq n\), and \(j = n\) or \(k = n\), but not both. We have

\[
(i)n = \begin{cases}
(j - i)n & \text{if } j > i \\
(i - j)n & \text{if } j \leq i
\end{cases} = \begin{cases}
\begin{align*}
n - (j - i) & = n \pm (i - j), \\
n - (i - j) &
\end{align*}
\end{cases}
\]

while

\[
i(n) = \begin{cases}
(n - j)^-i & \text{if } n - j > i \\
(n - j)^-(n - j) & \text{if } n - j \leq i
\end{cases} = n \pm (i - j).
\]

So all these \((i, j, n)\) are non-associative. There are \((n - 1) \times (n - 1) = (n - 1)^2\) of them. Similarly,

\[
(n)k = \begin{cases}
(n - i) - k & \text{if } n - i > k \\
k - (n - i) & \text{if } n - i \leq k
\end{cases} = \begin{cases}
\begin{align*}
n - i - k & = i + k - n, \\
i + k - n &
\end{align*}
\end{cases}
\]

while,

\[
i(nk) = \begin{cases}
(n - k)^-i & \text{if } n - k > i \\
(n - k)^-(n - k) & \text{if } n - k \leq i
\end{cases} = \begin{cases}
\begin{align*}
n - i - k & \text{if } n - i > k \\
i + k - n & \text{if } n - i \leq k
\end{align*}
\end{cases}
\]

Thus all these \((i, n, k)\) are associative. Consequently the increase in the number of non-associative triples when we pass from \(N_n\) to \(N_{n+1}\) is (allowing for the reverse of those just determined)

\[
2 (n - 1)^2; \text{ ie. (since } I(N_2) = 0\text{) we have proved (1).}
\]
It follows from (1) that,
\[l(N_n) = 2 \sum_{r=1}^{n-2} r^2 = 1/3 (n - 2) (n - 1) (2n - 3) \quad (n > 2). \]

(This also holds trivially for \(n = 1, 2 \).) The number \(K(N_n) \) of associative triples is thus
\[n^3 - l(N_n) = 1/3 (n^3 + 9 n^2 - 13n + 6), \]
so the associativity measure of our groupoid \((N_n, \ast)\) is (for \(n > 2 \))
\[K(N_n)/n^3 = 1/3 (1 + 9/n - 13/n^2 + 6/n^3) = f(n) \quad \text{say}. \]

Because \(f(n) - f(n + 1) = \ldots = (n - 1) \left(9n^3 + n^2 - 11n - 6 \right)/n^3 \left(n + 1 \right)^3 > 0 \) for \(n > 2 \), the sequence \(f \) is strictly decreasing and converges to \(1/3 \) when \(n \to \infty \).

Hence \(1/3 < K(N_n)/n^3 < 1 \quad (n > 2) \)

In other words, more than one-third of the triples for \(N_n \) are associative. Our groupoid, with neutral element \(0 \) and each element self-inverse, narrowly misses being an Abelian group.

2.6. Measure of associativity for inexact groupoid of degree one.

The measure of associativity for \((E, \Delta)\) has been discussed here.

2.6.1. Definition:

A triple \((a, b, c)\) of the elements of \(E \) is said to be associative if
\[(a \Delta b) \Delta c = a \Delta (b \Delta c). \]
2.6.2 Definition.

The measure of associativity for inexact groupoid \((E, \Delta)\) may be defined to be \(N(E)/m^3\), where \(N(E)\) is the number of associative triples, among the total of \(m^3\) that can be formed from elements of \(E\). Clearly \(0 < \frac{N(E)}{m^3} < 1\), where \(m > 2\).

A chart of some inexact groupoid of degree one is given below:

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Singleton set ({x_0})</th>
<th>Ordered subset of ([0, 1])</th>
<th>Inexact groupoids (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>({x_0})</td>
<td>({0, h = 1})</td>
<td>({0, 1}) = (E_2)</td>
</tr>
<tr>
<td>2</td>
<td>({x_0})</td>
<td>({0, h, 2h = 1})</td>
<td>({0, 1, 2}) = (E_3)</td>
</tr>
<tr>
<td>3</td>
<td>({x_0})</td>
<td>({0, h, 2h, 3h = 1})</td>
<td>({0, 1, 2, 3}) = (E_4)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(m - 1)</td>
<td>({x_0})</td>
<td>({0, h, 2h, \ldots, (m - 1)h = 1})</td>
<td>({0, 1, 2, \ldots, m - 1}) = (E_{m-1})</td>
</tr>
<tr>
<td>(m)</td>
<td>({x_0})</td>
<td>({a, h, 2h, \ldots, mh = 1})</td>
<td>({0, 1, 2, \ldots, m}) = (E_m)</td>
</tr>
</tbody>
</table>

Chart - 1

2.6.3. Proposition:

The associative measure of inexact groupoid \((E_m, \Delta)\), (for \(m > 2\)) is \(N(E_m)/m^3 = 1/3 (1 + 9/m - 13/m^2 + 6/m^3)\), where \(N(E_m)\) is the number of associative triples among the total of \(m^3\). This can be established as given by 2.5.