List of Figures

1.1 Vertical changes in average global atmospheric temperature
1.2 Change in average atmospheric pressure with altitude
1.3 Schematic fair-weather atmospheric boundary layer structure over land.
1.4 Typical diurnal progress of the boundary layer over a land surface.
1.5 Typical progress of potential temperature and wind speed in a stable boundary layer.
1.6 Low Level Jet stream over peninsular India observed at 00 UTC on 09 July 1961: (a) Height profile of wind speed at Visakhapatnam (17.1°N, 83.3°E) on the jet axis. (b) Winds and isoclines of wind in knots at 850 hPa level. A thick line marks LLJ axis.
1.7 Wind field at 1 km for August over the Indian Ocean. Thick lines marked are the LLJ axes. Isotachs in m/s are shown as broken lines.
1.8 Month-to-month progression of the LLJ at 1 km level
2.1 Block diagram of wind profiler radar
2.2 Beam geometry of a linear array of radiating elements forming a \sin\theta/\theta pattern. Two alternate display methods are shown: Amplitude on a polar plot (left), and using decibels on a Cartesian plot (right).
2.3 (a) Simplified block diagram, antenna assembly and (b) out-door unit of the Gadanki Wind profiler radar.
2.4 Range/time diagram. In this diagram, \(r_{\text{min}} \) is the minimum observable height which is equal to the pulse length \(\Delta r \) or equivalently in time \(\Delta t \). The maximum unambiguous range \(r_{\text{max}} \) is such that the pulse travel time \(t_1 \) is less than the inter pulse period (IPP). Hence \(T_1 \) is the first pulse \(T_2 \) is the time of the second pulse a period equal to the IPP later.
2.5 (a) Elements of the Doppler power spectrum. (b) Shown are the mean noise level, the Zeroth (Power), first (mean) and second (spectral width) moments of the power spectrum. The ratio of the signal \(S \) above the noise level, to the noise underneath the signal peak \(N \) is the signal to noise ratio.
2.6 Beam geometry. The Horizontal wind is determined by the vertical velocity \((w) \) and the radial velocity \([V(\theta,R)]\) from a beam inclined \(\theta \) from the vertical. The height of the observation is given by \(Z \) and the range by \(R \).

2.7 Propagation over horizon

2.8 Surface and Elevated Ducts

2.9 A simple refraction

2.10 Anomalous Propagation

3.1 (a) A maps showing India and location of the experimental site, National Atmospheric Research Laboratory, Gadanki. (b) Perspective image of Gadanki Valley and surrounding Environment

3.2 Wind profiler data availability from (a) September 1997 – September 2000 and (b) from April 1, 1999 – March 31, 2000

3.3 Typical example of wind speed measured simultaneously with Gadanki-LAWP and Indian MST radar on different days

3.4 Scatter plot of wind speed measured simultaneously with Gadanki-LAWP and MST radar

3.5 Wind speed (m/s) and wind direction (degrees)

3.6 Relative availability of wind measurements with the Gadanki-LAWP from April 1, 1999 – March 31, 2000

3.7 Time-height cross-section of (a) radar reflectivity observed by the vertical beam of the Gadanki-LAWP on 21-23 June 2000. (b) Horizontal winds averaged every one hour observed with the Gadanki-LAWP during 21-23 June 2000. Vectors are directed upward for a northward (southerly) component, and towards the right for eastward (westerly) component. Panel (c) shows disdrometer derived radar reflectivity and rain rate during the passage of mesoscale convective system.

3.8 Tropical cyclone influence over Gadanki was observed by the Gadanki-LAWP in time-height cross section of the Gadanki LAWP (a) reflectivity for the vertical beam on 14-20 October 1999. (b) Horizontal winds observed with the Gadanki-LAWP during 14-20 October 1999. Panel (c) shows disdrometer derived radar reflectivity and rain rate due to the influence of tropical cyclone.
3.9 5-day mean horizontal winds observed from March 1999 - September 2000 with Gadanki-LAWP

3.10 Vertical structure of mesoscale convective system (associated with thunderstorm) over Gadanki-LAWP observations on 18th August 1999.

3.11 Time-height cross-section of (a) mean reflectivity, (b) Doppler velocity observed by the vertical beam of the Gadanki-LAWP on 26 August 1999. Panel (c) shows the 1-min disdrometer derived rain rate. Panel (d) Surface temperature measured by the automatic weather station near LAWP.

3.12 The Doppler spectra observed during (a) convection (b) transition and (c) stratiform precipitation observed on 17 September 2000.

3.13 Time-height cross-section of (a) 10-min mean reflectivity, (b) Doppler velocity observed by the vertical beam of the Gadanki-LAWP on 17 and 18 May 1999. Panel (c) shows the 1-min disdrometer derived rain rate and reflectivity. In the panel (a) C, T and S indicate cloud types of the convective, transition, and stratiform, respectively.

3.14 (a) Annual and (b) diurnal variations of precipitating cloud systems observed at Gadanki, India

4.1 Five-days mean wind vector diagram of horizontal wind speed trends observed during the years 1998 (top), 1999 (middle), and 2000 (bottom).

4.2 Five-day mean wind vector diagram of horizontal wind speed trends observed during the years 1998 and 1999.

4.3a Four-hour average horizontal wind vector diagram observed during May-September for the years 1999.

4.3b Four-hour average horizontal wind vector diagram observed during May-September for the years 2000.

4.5 Average wind speed graphs Year 1998 (Morning (06LT to 08LT), Evening (17LT to 19LT)) (no data available in the month of September 1998 for both Gadanki and Bangkok)

4.6 Average wind speed graphs Year 1999 (Morning (06LT to 08LT), Evening (17LT to 19LT))

4.7 Average wind speed graphs Year 2000 for Gadanki (Morning (06LT to 08LT), Evening (17LT to 19LT))

4.8 Average wind speed [3 years (1998, 1999 and 2000) average, each profile 5 days average] at 850 hpa pressure during monsoon period (June to September).

5.1 Variation of monthly mean value of refractivity from January to December 2005 at the different height levels.

5.2 Variation of monthly mean value of refractivity gradient.

5.3 Summary of occurrence of sup-refractive conditions at all the levels.

5.4 Summary of occurrence of sub-refractive conditions at all the levels.

5.5 Profiles of modified refractivity gradient (solid line: radiosonde; dotted line: wind profiler) for Gadanki 1700 UTC on 17 June 2000

5.6 Left Side: Modified Refractivity Gradient, Specific humidity and Temperature Profiles from Radiosonde measurements for 08-06-00, 05 UTC, Right Side: Structure Function Parameter and wind velocity profiles from LAWP data for 08-06-00, 05 UTC

5.7 Left Side: Modified Refractivity Gradient, Specific humidity and Temperature Profiles from Radiosonde measurements for 08-06-00, 05 UTC, Right Side: Structure Function Parameter and wind velocity profiles from Gadanki-LAWP data for 08-06-00, 05 UTC

5.8 Left Side: Modified Refractivity Gradient, Specific humidity and Temperature Profiles from Radiosonde measurements for 14-06-00, 05 UTC, Right Side: Structure Function Parameter and wind velocity profiles from Gadnki-LAWP data for 14-06-00, 05 UTC

5.9 Ducts identified by wind profiler data.

5.10 Scatter plot of Duct measured simultaneously with Wind profiler radar and Radiosonde.