List of tables

Table 1 Effect of various concentrations of polyvinyl alcohol (PVA) on the size of poly (lactide – co-glycolide) (PLGA) microspheres

Table 2 Effect of various concentrations of polyvinyl alcohol (PVA) on the size of poly (lactide) (PLA) microspheres

Table 3 The viscosity of various oil phases employed in the formulation of chitosan microspheres

Table 4 The effect of various continuous phases on the size of the chitosan 50cps microspheres

Table 5 The effect of various continuous phases on the size of the chitosan 150cps microspheres

Table 6 The effect of various continuous phases on the size of the chitosan 300cps microspheres

Table 7 The effect of various continuous phases on the size of the albumin / dextran microspheres

Table 8 Effect of various concentrations of two different cross linking agents on the size of microspheres formed using 3 concentrations of PLGA polymer before and after sonification

Table 9 Effect of various concentrations of two different cross linking agents on the size of microspheres formed using 3 concentrations of PLA polymer before and after sonification

Table 10 Effect of various concentrations of two different cross linking agents on the size of microspheres formed using 3 concentrations of chitosan polymer (50 cps grade) before and after sonification

Table 11 Effect of various concentrations of two different cross linking agents on the size of microspheres formed using 3 concentrations of chitosan polymer (150 cps) before and after sonification

Table 12 Effect of various concentrations of two different cross linking agents on the size of microspheres formed using 3 concentrations of chitosan polymer (300 cps) before and after sonification

Table 13 Effect of various concentrations of glutaraldehyde on the size of microspheres formed using 3 concentrations of albumin / dextran polymer before and after sonification

Table 14 Particle size distribution of various hepatitis B vaccine encapsulated / unencapsulated polymeric microspheres before and after sonification

Table 15 Encapsulation efficiency of hepatitis B vaccine in to PLGA / PLA/ chitosan microspheres determined by various methods

Table 16 The effect of PLGA polymer with various concentrations of glutaraldehyde / dextran on vaccine loading

Table 17 The effect of PLA polymer with various concentrations of glutaraldehyde / dextran on vaccine loading

Table 18 The effect of chitosan polymer of 150 cps grade with various concentrations of glutaraldehyde / dextran on vaccine loading

Table 19 The effect of chitosan polymer of 50 and 300 CPS grades and with various concentrations of glutaraldehyde / dextran on vaccine loading

Table 20 A comparative study on loading capacity of hepatitis B vaccine in to PLGA / PLA/ chitosan microspheres after encapsulation

Table 21 FTIR Spectrum of hepatitis B vaccine/ various polymers/ polymeric microspheres with or without vaccine

Table 22 Water uptake of various polymeric microspheres and the size of the microspheres after 24hrs incubation in PBS of pH 7.4

Table 23 The stability studies of hepatitis B vaccine loaded and unloaded microspheres at various temperatures over a period of 8 weeks
Table 24: Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Table 25: Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by varying the concentrations of glutaraldehyde cross linked with 2% w/v of PLGA

Table 26: Effect of various concentrations of dextran on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Table 27: Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by varying the concentrations of dextran cross linked with 2% w/v of PLGA

Table 28: Effect of various concentrations of PLGA polymer with 2% v/v of glutaraldehyde as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Table 29: Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by varying the concentrations of PLGA polymer cross linked with 2% v/v of glutaraldehyde

Table 30: Effect of various concentrations of PLGA polymer with 2% w/v of dextran as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Table 31: Linear regression of in vitro release pattern of hepatitis B vaccine from PLGA microspheres prepared by varying the concentrations of PLGA polymer cross linked with 2% w/v of dextran

Table 32: A comparative study on in vitro release pattern of hepatitis B vaccine from PLGA microspheres

Table 33: Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Table 34: Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by varying the concentrations of glutaraldehyde cross linked with 2% w/v of PLA

Table 35: Effect of various concentrations of dextran on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Table 36: Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by varying the concentrations of dextran cross linked with 2% w/v of PLA

Table 37: Effect of various concentrations of PLA polymer with 2% v/v of glutaraldehyde as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Table 38: Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by varying the concentrations of PLA polymer cross linked with 2% v/v of glutaraldehyde

Table 39: Effect of various concentrations of PLA polymer with 2% w/v of dextran as cross linking agent on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Table 40: Linear regression of in vitro release pattern of hepatitis B vaccine from PLA microspheres prepared by varying the concentrations of PLA polymer cross linked with 2% w/v of dextran

Table 41: A comparative study on in vitro release pattern of hepatitis B vaccine from PLA microspheres

Table 42: Effect of various concentrations of glutaraldehyde on in vitro release pattern of hepatitis B vaccine from Chitosan microspheres

Table 43: Linear regression of in vitro release pattern of hepatitis B vaccine from Chitosan microspheres prepared by varying the concentrations of glutaraldehyde cross linked with 1% w/v of Chitosan

Table 44: Effect of various concentrations of dextran on in vitro release pattern of hepatitis B vaccine from Chitosan microspheres

Table 45: Linear regression of in vitro release pattern of hepatitis B vaccine from Chitosan microspheres prepared by varying the concentrations of dextran cross linked with 2% w/v of Chitosan
Table 46. Effect of various concentrations of Chitosan polymer with 2 % v/v of glutaraldehyde as cross linking agent on *in vitro* release pattern of hepatitis B vaccine from Chitosan microspheres

Table 47. Linear regression of *in vitro* release pattern of hepatitis B vaccine from Chitosan microspheres prepared by varying the concentrations of Chitosan polymer cross linked with 2% v/v of glutaraldehyde

Table 48. Effect of various concentrations of Chitosan polymer with 2 % w/v of dextran as cross linking agent on *in vitro* release pattern of hepatitis B vaccine from Chitosan microspheres

Table 49. Linear regression of *in vitro* release pattern of hepatitis B vaccine from Chitosan microspheres prepared by varying the concentrations of Chitosan polymer cross linked with 2% w/v of dextran

Table 50. A comparative study on *in vitro* release pattern of hepatitis B vaccine from Chitosan microspheres

Table 51. A comparative study on *in vitro* release pattern of hepatitis B vaccine from PLGA / PLA / Chitosan microspheres

Table 52. A comparative study on specific immunoglobulin (anti HBs Ag) (IU/L) of Wistar rats with various types of treatment groups

Table 53. A comparative study on serum IgG level (mg/dl) of Wistar rats with various types of treatment groups

Table 54. A comparative study on serum IgA level (mg/dl) of Wistar rats with various types of treatment groups

Table 55. A comparative study on serum IgM level (mg/dl) of Wistar rats with various types of treatment groups

Table 56. A comparative study on serum IgE level (IU/dl) of Wistar rats with various types of treatment groups