CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
</tbody>
</table>

Chapter 1: Review of Earlier Works and Scope for Present Investigation 1

1.1 Introduction
1.2 Development of Radio Astronomy
1.3 Region of emission of the Sun
1.4 Radio Waves from the Sun
1.5 Solar Radio Observations
1.6 Flare Detection using VLF Radio signals
1.7 Origin of Solar Radio Bursts
1.7.1 Cyclotron and Synchrotron Radiation
1.7.2 Magnetic Reconnection
1.8 Geomagnetic Behavior of the Earth
1.9 Signals from Jovian Planets:
1.10 Detecting Radio Waves from Jupiter
1.10.1 Extraterrestrial Radio Waves: The Discovery
1.10.2 Source of Radio Waves: Magnetospheres
1.10.3 Formation of the Jovian Magnetosphere
1.10.4 Anatomy of Jupiter’s Magnetosphere
1.11 Discussion
1.12 The Scheme of Presentation
References

Chapter 2: Techniques and Instrumentation 38

2.1 Introduction
2.2 Antenna Arrays: Terminology
2.2.1 Design Parameters of a Log Periodic Dipole Array
2.3 Instrument Block Description
2.4 Antenna system
2.5 Spectrum analyzer and Master computer
2.6 Balun Circuit and the Design Frequency Coverage
2.7 Discussion
References
Chapter 3: Observations of Sweep Frequency, Fixed Frequency and Flare Related Radio Bursts

3.1 Introduction
3.2 Importance of Solar Radio Observations
3.3 Solar Cycle and Sunspot Produced in Active Regions
3.4 Solar Flare
3.5 Solar Flare and Solar Radio Bursts
3.6 Classification of Solar Radio Bursts
3.6.1 Sweep Frequency Radio Bursts
3.6.2 Fixed Frequency Radio Bursts
3.6.3 Optical flare in H alpha classification
3.6.4 X-ray events
3.6.5 Disappearing Solar Filament
3.7 Instruments Used for Observing Radio Bursts
3.8 Methodology
3.9 Typical Record of Bursts
3.10 Analysis of the Recorded Data
3.10.1 Day-to-day Study of the Recorded Data
3.11 Discussion
References

Chapter 4: Radio Emissions of the Sun and Associated Geomagnetic Parameters during Maximum Solar Activity

4.1 Introduction
4.2 Activity of Solar Flares
4.3 Solar Radio Emission
4.4 Recorded Bursts
4.5 Effects of Coronal Mass Ejection on the Earth
4.6 Solar Wind and Geomagnetic Storms
4.7 Geomagnetic Indices from January 2009 to January 2014
4.8 Discussion
References

Chapter 5: Observation of a Variable Radio Sources as Derived from Jupiter and its Galilean Satellites

5.1 Introduction
5.2 Significant Milestone
5.3 Jupiter's Radiation Output and its Magnetic Field
5.4 Radio Emissions from Jupiter and its Moons
Chapter 6: The Stormy Weather of Jupiter and a Comparison to Earth

6.1 Introduction
6.2 Atmosphere of Jupiter
6.2.1 Vertical Structure
6.2.2 Chemical Composition
6.3 Jupiter's Cloud Bands
6.4 Blow of Storm Winds in Jupiter's Little Red Spot
6.5 Heat Deep and Jupiter's Storms
6.6 Cyclones and Anticyclones
6.7 Dynamics
6.7.1 Shallow Models
6.7.2 Deep Models
6.8 Jupiter & Earth Similarities
6.9 Discussion
References

Chapter 7: Significant Changes of Jupiter’s Little and Great Red Spot as Recorded by Spacecrafts

7.1 Introduction
7.2 Theoretical Approach for Determining Eccentricity, Relative Vorticity and Rossby Number
7.3 Spacecrafts Employed for The Study
7.4 Appearances and Disappearances
7.5 Distribution of Lifetimes
7.6 Relation to Zonal Winds of Jupiter
7.7 Wind Fields in the GRS and the LRS
7.8 Interaction with the GRS
7.9 Discussion
References
Chapter 8: Summary of the Work done and Scope for further Investigations

8.1 Summary
8.2 Scope for further Investigation

List of Papers Published/Accepted by the Author on which the Thesis is based