CHAPTER 6

GENERALISED LOCAL CONNECTEDNESS

6.1 LOCALLY α CONNECTEDNESS

DEFINITION 6.1.1: Let X be a topological space.

Let A and B be two subsets of X. A and B are said to be α separated if

$$A \cap \alpha\text{cl } B = \alpha\text{cl } A \cap B = \emptyset.$$

DEFINITION 6.1.2: Let X be a topological space. Let A be a subset of X. A is called a α connected set if A can not be expressed as the union of two non empty α separated sets.

The topological space X is said to be α connected if X can not be expressed as the union of two non empty α separated sets.

DEFINITION 6.1.3: Let X be a topological space and let $x \in X$. X is said to be locally α connected at x, if for every α open set U containing x, \exists a α connected open set C such that $x \in C \subset U$.

DEFINITION 6.1.4: A topological space X is said to be locally α connected if X is locally α connected at each point of X.
THEOREM 6.1.5: If A is α connected and $A \subseteq C \cup D$ where C and D are α separated sets, then either $A \subseteq C$ or $A \subseteq D$.

PROOF: A is α connected and $A \subseteq C \cup D$. C and D are α separated.

Then $A = (A \cap C) \cup (A \cap D)$.

$(A \cap C) \cap \alpha \text{cl} (A \cap D) \subseteq (A \cap C) \cap (\alpha \text{cl} A \cap \alpha \text{cl} D)$.

$\subseteq C \cap \alpha \text{cl} D = \phi$.

Similarly $(A \cap D) \cap \alpha \text{cl} (A \cap C) = \phi$. Hence $A \cap C$ and $A \cap D$ are α separated sets. Since A is α connected and $A = (A \cap C) \cup (A \cap D)$,

$A \cap C = \phi$ or $A \cap D = \phi$. Hence $A = A \cap D$ or $A = A \cap C$.

Therefore $A \subseteq D$ or $A \subseteq C$.

THEOREM 6.1.6: The union of a family of α connected sets having non empty intersection is α connected.

PROOF:

Let $\{A_s / s \in I\}$ be a family of α connected subsets of X, where I is an index set and let $\cap A_\alpha \neq \phi$.

Let $A = \cup A_s$. Suppose A is not α connected, then $A = C \cup D$ where C and D are non empty α separated sets. Take $x \in \cap A_s$. Then $x \in A$.

Hence $x \in C \cup D$.

Since C and D are α separated, $x \in C$ or $x \in D$.
Case 1: Let $x \in C$.

Fix any $s \in I$. Then $A_s \subset A$. Hence $A_s \subset C \cup D$.

A_s is α connected, C and D are α separated. Hence by theorem 6.1.5 $A_s \subset C$ or $A_s \subset D$.

Since $x \in C$ and $x \in A_s$, $x \in A_s \cap C$. Hence $A_s \cap C \neq \emptyset$.

Now $A_s \subset C$ or $A_s \subset D$, C and D are α separated, $A_s \cap C \neq \emptyset$.

Hence $A_s \subset C$. This is true for each s in I.

Hence $\bigcup A_s \subset C$. Hence $A \subset C$. Therefore $D = \emptyset$. $\Rightarrow \Leftarrow$

Therefore A is α connected.

Case 2: Let $x \in D$. By a similar proof as in case 1, A is α connected.

THEOREM 6.1.7: If A is α connected and $A \subset B \subset \text{acl}(A)$, then B is α connected. In particular $\text{acl}(A)$ is α connected.

PROOF: A is α connected and $A \subset B \subset \text{acl}(A)$.

Suppose B is not α connected. Then $B = C \cup D$ where C and D are non empty α separated sets.

$A \subset B \Rightarrow A \subset C \cup D$. By theorem 6.1.5. $A \subset C$ or $A \subset D$.

Case 1: Let $A \subset C$. Then $\text{acl} A \subset \text{acl} C$.

$x \in B \Rightarrow x \in \text{acl} A \Rightarrow x \in \text{acl} C \Rightarrow x \notin D$.

$B = C \cup D$ and $x \in B \Rightarrow x \notin D$. Hence $D = \emptyset$. $\Rightarrow \Leftarrow$

146
Hence B is connected.

Case 2: Let \(A \subseteq D \). Similar to case 1, we get B is connected.

DEFINITION 6.1.8: Let \(x \in X \). The \(\alpha \) component of \(x \) denoted by \(\alpha c(x) \) is the union of all \(\alpha \) connected subsets of \(X \) containing \(x \).

THEOREM 6.1.9: \(\alpha c(x) \) is \(\alpha \) connected.

PROOF: Let \(x \in X \). \(\alpha c(x) \) is the union of all \(\alpha \) connected subsets of \(X \) containing \(x \). Hence by theorem 6.1.6, \(\alpha c(x) \) is \(\alpha \) connected.

DEFINITION 6.1.10: Let \(E \) be a subset of \(X \) and \(x \in E \). Then the union of all \(\alpha \) connected sets containing \(x \) and contained in \(E \) is called the \(\alpha \) component of \(x \) corresponding to \(E \).

THEOREM 6.1.11: Let \(X \) be a topological space which is not \(\alpha \) connected. Then each \(\alpha \) component \(\alpha c(x) \) is a maximal \(\alpha \) connected set in \(X \).

PROOF: Let \(\alpha c(x) = A \).

By theorem 6.1.9, \(A \) is \(\alpha \) connected.
If A is not a maximal α connected set, then \exists a α connected set B with

$A \subseteq B$ and $A \neq B$.

Then B is a α connected set containing x.

But A is the union of all α connected sets containing x.

Hence $B \subseteq A$. Therefore $A = B$. \iff

Hence A is a maximal α connected set.

THEOREM 6.1.12: The set of all distinct α components of points of X

form a partition of X.

PROOF:

case 1: Let X be α connected.

For each x in X, $\alpha c(x) = X$. Hence X is the only α component.

Case 2: Let X be not α connected. Take x, y in X.

Let $\alpha c(x) \cap \alpha c(y) \neq \emptyset$.

Then $\alpha c(x)$ and $\alpha c(y)$ are α connected sets with non empty intersection.

Hence by theorem 6.1.6, $\alpha c(x) \cup \alpha c(y)$ is α connected.

By the property of maximality, $\alpha c(x) = \alpha c(x) \cup \alpha c(y)$.

Hence $\alpha c(y) \subseteq \alpha c(x)$. similarly $\alpha c(x) \subseteq \alpha c(y)$. Hence $\alpha c(x) = \alpha c(y)$.

Therefore $\alpha c(x) \cap \alpha c(y) \neq \emptyset \implies \alpha c(x) = \alpha c(y)$.

Hence distinct α components are disjoint.
Let U be the union of all α components.

Then $U \subset X$. Take $x \in X$. Then $x \in \alpha c(x) \subset U$.

Hence $X \subset U$. Therefore $X = U$.

Hence X is the union of all α components.

Since distinct α components are disjoint, X is the union of all distinct α components. Also each α component is non empty.

Therefore the set of all distinct α components form a partition of X.

THEOREM 6.1.13: Each $\alpha c(x)$ is α closed.

PROOF: Take $A = \alpha c(x)$. Then by theorem 6.1.9, A is α connected.

By theorem 6.1.7, $\alpha cl(A)$ is α connected. Hence $\alpha cl(A)$ is a α connected set containing x. Therefore $\alpha cl(A) \subset \alpha cl(x) = A$.

Hence A is α closed. Therefore $\alpha c(x)$ is α closed.

6.2 LOCALLY β CONNECTEDNESS

DEFINITION 6.2.1: Let X be a topological space.

Let A and B be two subsets of X. A and B are said to be β separated if

$A \cap \beta cl\ B = \beta cl A \cap B = \phi$.
DEFINITION 6.2.2: Let X be a topological space. Let A be a subset of X. A is called a β connected set if A cannot be expressed as the union of two non empty β separated sets.

The topological space X is said to be β connected if X can not be expressed as the union of two non empty β separated sets.

DEFINITION 6.2.3: Let X be a topological space and let $x \in X$. X is said to be locally β connected at x, if for every β open set U containing x, there exists a β connected open set C such that $x \in C \subset U$.

DEFINITION 6.2.4: A topological space X is said to be locally β connected if X is locally β connected at each point of X.

THEOREM 6.2.5: If A is β connected and $A \subset C \cup D$ where C and D are β separated sets, then either $A \subset C$ or $A \subset D$.

PROOF: A is β connected and $A \subset C \cup D$. C and D are β separated.

Then $A = (A \cap C) \cup (A \cap D)$.

$$(A \cap C) \cap \beta \text{cl} (A \cap D) \subset (A \cap C) \cap (\beta \text{cl} A \cap \beta \text{cl} D).$$

$$\subset C \cap \beta \text{cl} D = \emptyset.$$
Similarly \((A \cap D) \cap \beta cl(A \cap C) = \emptyset\). Hence \(A \cap C\) and \(A \cap D\) are \(\beta\) separated sets. Since \(A\) is \(\beta\) connected and \(A = (A \cap C) \cup (A \cap D)\), \(A \cap C = \emptyset\) or \(A \cap D = \emptyset\). Hence \(A = A \cap D\) or \(A = A \cap C\).

Therefore \(A \subseteq D\) or \(A \subseteq C\).

THEOREM 6.2.6: The union of a family of \(\beta\) connected sets having non-empty intersection is \(\beta\) connected.

PROOF:

Let \(\{A_s / s \in I\}\) be a family of \(\beta\) connected subsets of \(X\) where \(I\) is an index set and let \(\cap A_s \neq \emptyset\).

Let \(A = \bigcup A_s\). Suppose \(A\) is not \(\beta\) connected, then \(A = C \cup D\) where \(C\) and \(D\) are non-empty \(\beta\) separated sets. Take \(x \in \cap A_s\). Then \(x \in A_s\).

Hence \(x \in C \cup D\).

Since \(C\) and \(D\) are \(\beta\) separated, \(x \in C\) or \(x \in D\).

Case 1: Let \(x \in C\).

Fix any \(s \in I\). Then \(A_s \subseteq A\). Hence \(A_s \subseteq C \cup D\).

\(A_s\) is \(\alpha\) connected, \(C\) and \(D\) are \(\beta\) separated. Hence by theorem 6.1.5 \(A_s \subseteq C\) or \(A_s \subseteq D\).

Since \(x \in C\) and \(x \in A_s\), \(x \in A_s \cap C\). Hence \(A_s \cap C \neq \emptyset\).

Now \(A_s \subseteq C\) or \(A_s \subseteq D\), \(C\) and \(D\) are \(\beta\) separated, \(A_s \cap C \neq \emptyset\).
Hence $A_s \subseteq C$. This is true for each s in I.

Hence $\bigcup A_s \subseteq C$. Hence $A \subseteq C$. Therefore $D = \emptyset$. $\Rightarrow \Leftarrow$

Therefore A is β connected.

Case 2: Let $x \in D$. By a similar proof as in case 1, A is β connected.

THEOREM 6.2.7: If A is β connected and $A \subseteq B \subseteq \beta cl(A)$, then B is β connected. In particular $\beta cl(A)$ is β connected.

PROOF: A is β connected and $A \subseteq B \subseteq \beta cl(A)$.

Suppose B is not β connected. Then $B = C \cup D$ where C and D are non-empty β separated sets.

$A \subseteq B \Rightarrow A \subseteq C \cup D$. By theorem 6.2.5. $A \subseteq C$ or $A \subseteq D$.

Case 1: Let $A \subseteq C$. Then $\beta cl A \subseteq \beta cl C$.

$x \in B \Rightarrow x \in \beta cl A \Rightarrow x \in \beta cl C \Rightarrow x \notin D$.

$B = C \cup D$ and $x \in B \Rightarrow x \notin D$. Hence $D = \emptyset$. $\Rightarrow \Leftarrow$

Hence B is β connected.

Case 2: Let $A \subseteq D$. Similar to case 1, we get B is β connected.

DEFINITION 6.2.8: Let $x \in X$. The β component of x denoted by $\beta c(x)$ is the union of all β connected subsets of X containing x.

152
THEOREM 6.2.9: $\beta c(x)$ is β connected.

PROOF: Let $x \in X$. $\beta c(x)$ is the union of all β connected subsets of X containing x. Hence by theorem 6.2.6, $\beta c(x)$ is β connected.

DEFINITION 6.2.10: Let E be a subset of X and $x \in E$. Then the union of all β connected sets containing x and contained in E is called the β component of x corresponding to E.

THEOREM 6.2.11: Let X be a topological space which is not β connected. Then each β component $\beta c(x)$ is a maximal β connected set in X.

PROOF: Let $\beta c(x) = A$.

By theorem 6.2.9, A is β connected.

If A is not a maximal β connected set, then \exists a β connected set B with $A \subset B$ and $A \neq B$.

Then B is a β connected set containing x.

But A is the union of all β connected sets containing x.

Hence $B \subset A$. Therefore $A = B$. \Rightarrow \Leftarrow

Hence A is a maximal β connected set.
THEOREM 6.2.12: The set of all distinct β components of points of X form a partition of X.

PROOF:

Case 1: Let X be β connected.

For each x in X, $\beta c(x) = X$. Hence X is the only β component.

Case 2: Let X be not β connected. Take x, y in X.

Let $\beta c(x) \cap \beta c(y) \neq \phi$.

Then $\beta c(x)$ and $\beta c(y)$ are β connected sets with non empty intersection.

Hence by theorem 6.2.6, $\beta c(x) \cup \beta c(y)$ is β connected.

By the property of maximality, $\beta c(x) = \beta c(x) \cup \beta c(y)$.

Hence $\beta c(y) \subseteq \beta c(x)$. Similarly $\beta c(x) \subseteq \beta c(y)$. Hence $\beta c(x) = \beta c(y)$.

Therefore $\beta c(x) \cap \beta c(y) \neq \phi \Rightarrow \beta c(x) = \beta c(y)$.

Hence distinct β components are disjoint.

Let U be the union of all β components.

Then $U \subseteq X$. Take $x \in X$. Then $x \in \beta c(x) \subseteq U$.

Hence $X \subseteq U$. Therefore $X = U$.

Hence X is the union of all β components.

Since distinct β components are disjoint, X is the union of all distinct β components. Also each β component is non empty.

Therefore the set of all distinct β components form a partition of X. 154
THEOREM 6.2.13: Each $\beta c(x)$ is β closed.

PROOF: Take $A = \beta c(x)$. Then by theorem 6.2.9, A is β connected.

By theorem 6.2.7, $\beta \text{cl}(A)$ is β connected. Hence $\beta \text{cl}(A)$ is a β connected set containing x. Therefore $\beta \text{cl}(A) \subseteq \beta \text{cl}(x) = A$.

Hence A is β closed. Therefore $\beta c(x)$ is β closed.