CONTENTS

Chapter 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Bonding requirements for conductivity</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Doping induced conductivity of organic polymer</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Formation of charge defects</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Formation of solitons</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Ring-torsional solitons</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Formation of polaron and bipolaron</td>
<td>6</td>
</tr>
<tr>
<td>1.8</td>
<td>Charge transport in conducting polymers</td>
<td>7</td>
</tr>
<tr>
<td>1.9</td>
<td>Development of organic conducting polymer</td>
<td>7</td>
</tr>
<tr>
<td>1.10</td>
<td>Applications of conducting polymers</td>
<td>8</td>
</tr>
<tr>
<td>1.11</td>
<td>Polyaniline as a significant conducting polymer</td>
<td>10</td>
</tr>
<tr>
<td>1.12</td>
<td>Origin and development of conducting polyaniline</td>
<td>10</td>
</tr>
<tr>
<td>1.13</td>
<td>Chemistry of polyaniline</td>
<td>11</td>
</tr>
<tr>
<td>1.13a.</td>
<td>Synthesis</td>
<td>12</td>
</tr>
<tr>
<td>1.13a.</td>
<td>1. Chemical method</td>
<td>12</td>
</tr>
<tr>
<td>1.13a.</td>
<td>2. Electrochemical method</td>
<td>14</td>
</tr>
<tr>
<td>1.13b.</td>
<td>Structure</td>
<td>15</td>
</tr>
<tr>
<td>1.13b.</td>
<td>1. Substituent and dopant effects on structure</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1a. Substituent effect</td>
<td>17</td>
</tr>
</tbody>
</table>
1b. Dopant effect

2. Solvent effect on structure on polyaniline

1.13c. Doping

1. Doping techniques

2. Secondary doping

1.13d. Optically active polyaniline via primary doping

1.13e. Physico-chemical properties

1. Electrochemical properties

2. Electrical conductivity

2a. Temperature dependence of conductivity

3. Spectral studies

3a. Optical absorption spectra

3b. Infrared spectra

3c. Nuclear magnetic resonance spectra

3d. Mossbauer spectra

3e. Electron spin resonance spectra

4. Crystallinity

5. Thermal behaviour

1.13f. Blend and composite of polyaniline

1. Blends

2. Composites

1.13g. Applications of polyaniline

1. Batteries
Chapter 2. SCOPE AND OBJECTIVE

2.1 Preamble

2.2 Polyaniline-Unique in its class and choice for the present work

2.3 Objective and work plan

2.4 Chemical method for first two approaches

2.5 Third approach by electrochemical way

Chapter 3. EXPERIMENTAL

3.1 Materials

3.2 Purification

3.2a. Water

3.2b. Aniline

3.2c. Ethanol

3.3 Preparation of metal oxalate complexes

3.3a. Potassium trioxalatochromate(III)

3.3b. Potassium trioxalatoferrate(III)
3.3c. Potassium trioxalatocobaltate(III) 65
3.3d. Potassium trioxalatomanganate(III) 65
3.3e. Potassium trioxalatoaluminate(III) 66

3.4 Methods of synthesis of polymer samples 66

3.4a. Chemical synthesis 66
1. Pani-SO$_4^{2-}$ 66
2. Pani-SO$_4^{2-}$/metal oxalate composites 67
3. Pani-SO$_4^{2-}$/PVA blend 67
4. Pani-SO$_4^{2-}$/PVA+Cu(II) blend 67
5. Pani-SO$_4^{2-}$/PVP blend 68
6. Pani-SO$_4^{2-}$/PVP+I$_2$ blend 68

3.4b. Electrochemical synthesis 68
1. Polyaniline in different electrolyte media 69
2. NSA derivatives doped polyaniline 69

3.5 Methods of characterisation 69

3.5a. Chemical analyses of polyaniline materials for SO$_4^{2-}$ and C$_2$O$_4^{2-}$ content 69
Estimation of sulphate 70
Estimation of oxalate 70
Estimation of water content 71

3.5b. Spectral characterisation of polymer materials 71

3.5c. Structural characterisation with XRD 72

3.5d. Thermal characterisation 72
RESULTS AND DISCUSSION

Chapter 4. ORGANIC-INORGANIC HYBRID MATERIALS

Polyaniline-metal oxalate composites
4.1 Introduction 79
4.2 Synthesis and analysis 81
4.3 Chemical analyses, yield and conductivity 85
4.4 IR spectral studies 87
4.5 UV-VIS spectral studies 91
4.6 XRD studies 96
4.7 Thermal studies 98

Charge dynamic characteristics
4.8 Presence of polaron from UV-VIS spectra 102
4.9 EPR spectral studies 102
4.10 Conductivity characteristics 107
4.11 Charge transport mechanism 117
4.12 Conclusions 117

References 120

Chapter 5. POLYANILINE-WATER SOLUBLE POLYMER (PVA/PVP) BLENDS

Polyaniline-PVA blend and the effect of Cu(II) coordination 124

5.1 Introduction 124
5.2 Synthesis and characterisation of polyaniline blends 125
5.3 Yield and conductivity 125
5.4 XRD studies 127
5.5 Thermal studies 129
5.6 IR spectral studies 132
5.7 UV-VIS spectral studies 136
5.8 Temperature dependence of conductivity 142
5.9 Conduction mechanism 146
5.10 Conclusion 148

Polymer-PVP blend and the effect of Iodine complexation 149

5.11 Introduction 149
5.12 Synthesis, characterisation of Pani-SO$_4^{2-}$ and its blends with PVP and PVP+I$_2$ 150
5.13 Yield and conductivity 151
5.14 Influence of temperature on conductivity 151
Chapter 6. FUNCTIONAL ORGANIC DOPANTS-POLYANILINE SYSTEMS

Effect of electrolyte media (mineral acid + organic dopant) on electrodeposition and characteristics of polyaniline

6.1 Introduction 176
6.2 Electrodeposition and characterisation of polyaniline 177
6.3 Yield and conductivity 177
6.4 Electrochemical studies by CV technique 179
6.5 IR spectral studies 182
6.6 UV-VIS spectral studies 187
6.7 EPR spectral studies 190
6.8 XRD studies 194
6.9 Thermal studies 199
6.10 Conclusion 199
Effect of naphthalenesulphonic acid derivative dopants on electrodeposition and characteristics of polyaniline in H₂SO₄ medium

6.11 Introduction

6.12 Electrodeposition and characterisation of polyaniline with different naphthanlenesulphonic acid dopants

6.13 Yield and conductivity

6.14 IR spectral studies

6.15 UV-VIS spectral studies

6.16 XRD studies

6.17 Thermal studies

6.18 Temperature dependence of conductivity

6.19 Conclusion

References

Chapter 7 SUMMARY AND FUTURE PLAN

Summary

Future prospect in polyaniline studies

List of Publications