Table of Contents

Supervisor’s Certificate ii
Declaration by the Scholar iii
Dedication iv
Acknowledgement v
Preface vii
List of Figures xiii
List of Tables xvi
List of Publications xvii

Chapter 1

Introduction 1
1.1 History and Scope of the Fluid Mechanics 1
1.2 Newtonian Fluids and Stokes’ Approximation 5
1.3 Flow through Porous Media . 10
1.4 Theory of Non-Newtonian Fluids 13
1.5 The Cell Model Technique and Boundary Conditions 29
Chapter 2

Stokes Flow of Micropolar Fluid over a Reiner-Rivlin Liquid Sphere

with Non-Zero Spin Condition

2.1 Introduction

2.2 Mathematical Formulation and Solution of the Problem

2.3 Application of Boundary Conditions and Determination of Arbitrary Constants

2.4 Evaluation of Drag on Liquid Sphere

2.5 Some Limiting Cases and Discussion

2.6 Conclusion

Chapter 3

Stokes Flow of Micropolar Fluid over a Deformed Reiner-Rivlin Liquid Sphere

3.1 Introduction

3.2 Mathematical Formulation and Solution of the Problem

3.3 Boundary Conditions and Determination of Arbitrary Constants

3.4 Application to a Liquid Oblate Spheroid

3.5 Evaluation of Drag on Liquid Oblate Spheroid

3.6 Some Limiting Cases and Discussion

3.7 Conclusion
Chapter 4

Slow Viscous Flow Past an Encapsulated Drop of Non-Newtonian Liquid

4.1 Introduction ... 77
4.2 Mathematical Formulation and Solution of the Problem 81
4.3 Boundary Conditions and Determination of Arbitrary Constants . 85
4.4 Evaluation of Drag on Capsule 89
4.5 Some Limiting Cases and Discussion 90
4.6 Conclusion ... 97

Chapter 5

Stokes Flow over a Reiner-Rivlin Liquid Sphere Embedded in a Saturated Porous Medium

5.1 Introduction ... 98
5.2 Mathematical Formulation and Solution of the Problem 100
5.3 Boundary Conditions and Determination of Unknowns 104
5.4 Evaluation of Drag on Liquid Sphere 106
5.5 Some Limiting Cases and Discussion 107
5.6 Conclusion ... 117

Chapter 6

Cell Models for Stokes Flow Past an Assemblage of Reiner-Rivlin Liquid Drops

6.1 Introduction ... 119
6.2 Mathematical Formulation of the Problem 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Boundary Conditions</td>
<td>126</td>
</tr>
<tr>
<td>6.4 Solution of the Problem and Application of Boundary Conditions</td>
<td>128</td>
</tr>
<tr>
<td>6.5 Evaluation of Drag Force</td>
<td>134</td>
</tr>
<tr>
<td>6.6 Limiting Cases and Some Known Results</td>
<td>134</td>
</tr>
<tr>
<td>6.7 Conclusion</td>
<td>146</td>
</tr>
<tr>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>Effects of Wall on the Motion of a Reiner-Rivlin Liquid Spheroid</td>
<td>148</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>148</td>
</tr>
<tr>
<td>7.2 Mathematical Formulation and Solution of the Problem</td>
<td>151</td>
</tr>
<tr>
<td>7.3 Boundary Conditions and Determination of Arbitrary Constants</td>
<td>155</td>
</tr>
<tr>
<td>7.4 Application to a Reiner-Rivlin Liquid Oblate Spheroid</td>
<td>160</td>
</tr>
<tr>
<td>7.5 Evaluation of Drag on Liquid Oblate Spheroid and Wall Effects</td>
<td>161</td>
</tr>
<tr>
<td>7.6 Limiting Cases and Known Results</td>
<td>163</td>
</tr>
<tr>
<td>7.7 Conclusion</td>
<td>171</td>
</tr>
<tr>
<td>Conclusions</td>
<td>173</td>
</tr>
<tr>
<td>Future Scope</td>
<td>175</td>
</tr>
<tr>
<td>Bibliography</td>
<td>176</td>
</tr>
</tbody>
</table>