APPENDIX IV: Test for the difference of two population means.

On the basis of the independent samples from two normal populations having a common but unspecified variance, to the hypothesis (H₀) that the difference between the means $\delta = A_1 - A_2$ has a specified value δ_0 ,

 $H_{o}: \delta = \delta_{o}$

the procedure is to reject H_o against alternatives $H:\delta > \delta_o$, at the level of significance α if

$$T = \frac{\left(X_{1} - X_{2}\right)}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n_{1} + n_{2} - 2}}} > t_{v}(\alpha)$$

where $2^{9} = n_{1} + n_{2} - 2$ (degrees of freedom)

$$s_{1}^{2} = \sum (X_{i} - X_{1})^{2} \text{ where } X_{1} = \sum_{i_{1} \in I}^{n_{1}} X_{i_{1}}/n_{1}$$

$$s_{2}^{2} = \sum (X_{i_{2}} - X_{2})^{2} \text{ where } X_{2} = \sum_{i_{2} \in I}^{n_{1}} X_{i_{2}}/n_{1}$$

and