CHAPTER VI

I-CONVERENT SEQUENCE SPACES DEFINED BY ORLICZ FUNCTION

6.1 INTRODUCTION

The notion of I-convergence was studied at the initial stage Kostyrko, Šalát and Wilczyński [69]. Later on it was studied by Šalát, Tripathy and Ziman [109], Demirci [28] and others.

An Orlicz function is a function $M: [0, \infty) \rightarrow [0, \infty)$, which is continuous, non-decreasing and convex with $M(0) = 0$, $M(x) > 0$, for $x > 0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

If the convexity of Orlicz function M is replaced by

$$M(x + y) \leq M(x) + M(y),$$

then this function is called modulus function. The notion was introduced by Nakano [94] and Ruckle [107] further studied with application to sequence space by Maddox [83] and many others.

Remark 6.1.1. It is well known if M is a convex function and $M(0) = 0$, then $M(\lambda x) \leq \lambda M(x)$, for all λ with $0 < \lambda < 1$.

6.2 DEFINITIONS AND NOTATIONS

A sequence space E is said to be solid (or normal) if $(\alpha_k, x_k) \in E$, whenever $(x_k) \in E$ and for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in N$.

A sequence space E is said to be symmetric if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where π is a permutation of N.
A sequence space E is said to be a sequence algebra if $(x_k)(y_k) = (x_k \ast y_k) \in E$, whenever $(x_k), (y_k) \in E$.

A sequence space E is said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k \to 0$ implies $y_k \to 0$.

Let $K = \{k_1 < k_2 < \cdots \subseteq N$ and E be a sequence space. A K-step space of E is a sequence space $\lambda^E_K = \{(x_{k_n}) \in w : (k_n) \in E \}.$

A canonical preimage of a sequence $\{x_{k_n}\} \in \lambda^E_K$ is a sequence $\{y_k\} \in w$ defined as

$$y_k = \begin{cases} x_n, & \text{if } n \in K; \\ 0, & \text{otherwise}. \end{cases}$$

A canonical preimage of a step space λ^E_K is a set of canonical preimages of all elements in λ^E_K, i.e., y is in canonical preimage of λ^E_K if and only if y is canonical preimage of some $x \in \lambda^E_K$.

A sequence space E is said to be monotone if it contains the canonical preimages of its step spaces.

In this chapter we introduce the following classes of sequence:

$$c'(M) = \left\{(x_k) \in w : I - \lim M \left(\frac{|x_k - L|}{\rho} \right) = 0, \text{for some } L \text{ and } \rho > 0 \right\};$$

$$c'_0(M) = \left\{(x_k) \in w : I - \lim M \left(\frac{|x_k|}{\rho} \right) = 0, \text{for some } \rho > 0 \right\};$$

$$\ell_\infty(M) = \left\{(x_k) \in w : \sup_k M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{for some } \rho > 0 \right\}.$$

Also we write $m'_M = c'(M) \cap \ell_\infty(M)$ and $m'_0(M) = c'_0(M) \cap \ell_\infty(M)$.
Lemma 6.2.1 (Kamthan and Gupta [62], page 53). A sequence space E is solid implies E is monotone.

Lemma 6.2.2 (Šalát, Tripathy and Ziman [110], Lemma 2.5). Let $K \in \mathcal{S}(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.

Lemma 6.2.3 (Kostyrko, Šalát and Wilczyński [69], Lemma 5.1). If $I \subseteq 2^N$ is a maximal admissible ideal, then for each $A \subseteq N$ we have $A \in I$, or $N-A \in I$.

6.3 MAIN RESULTS

Theorem 6.3.1. For any Orlicz function M, the classes of sequences $c^1(M), c^0(M), m^1(M)$ and $m^0(M)$ are linear spaces.

Theorem 6.3.2. The spaces $m^0(M)$ and $m^1(M)$ are Banach spaces normed by

$$
\| (x_k) \| = \inf \left\{ \rho > 0 : \sup_k M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}.
$$

Theorem 6.3.3. Let M_1, M_2 be Orlicz functions those satisfy Δ_2-condition. Then

(i) $W(M_2) \subseteq W(M_1 \ast M_2)$;

(ii) $W(M_1) \cap W(M_2) \subseteq W(M_1 + M_2)$, for $W = c^1, c^0, m^1, m^0$.

Corollary 6.3.4. $W \subseteq W(M)$, where $W = c^1, c^0, m^1, m^0$.

Result 6.3.5. The spaces $c^0(M)$ and $m^0(M)$ are solid and monotone.

Result 6.3.6. The space $c^1(M)$ and $m^1(M)$ are neither monotone nor solid in general.
RESULT 6.3.7. The spaces \(c^1(M) \) and \(c'^0(M) \) are not convergence free in general.

RESULT 6.3.8. The spaces \(c^1(M) \) and \(c'^0(M) \) are sequence algebra.

THEOREM 6.3.9. Let \(M \) be Orlicz function. Then \(c'^0(M) \subset c^1(M) \subset \ell_+^i(M) \) and the inclusion is proper.

6.4 THE PROOF OF THE RESULTS OF 6.3.

PROOF OF THE THEOREM 6.3.1. We shall prove the result only for \(c^1(M) \). The others can be treated similarly.

Let \((x_k), (y_k) \in c^1(M) \) and \(\alpha, \beta \) be scalars. Then there exist positive numbers \(\rho_1 \) and \(\rho_2 \) such that

\[
\begin{align*}
I\text{-}lim M\left(\frac{|x_k - L_1|}{\rho_1} \right) &= 0, \text{ for some } L_1 \in C, \\
I\text{-}lim M\left(\frac{|y_k - L_2|}{\rho_2} \right) &= 0, \text{ for some } L_2 \in C.
\end{align*}
\]

Let \(\rho_3 = \max \{2|\alpha| \rho_1, 2|\beta| \rho_2 \} \)

Since \(M \) is non-decreasing and convex function, we have

\[
M\left(\frac{\alpha x_k + \beta y_k - (\alpha L_1 + \beta L_2)}{\rho_3} \right) \\
\leq M\left(\frac{\alpha |x_k - L_1|}{\rho_3} + \frac{\beta |y_k - L_2|}{\rho_3} \right) \\
\leq M\left(\frac{|x_k - L_1|}{\rho_1} \right) + M\left(\frac{|y_k - L_2|}{\rho_2} \right).
\]
Therefore

\[I\lim M \left(\frac{|αx_k + βy_k|}{ρ_3} - (αL_1 + βL_2) \right) \leq I\lim M \left(\frac{|x_k - L_1|}{ρ_1} \right) + I\lim M \left(\frac{|y_k - L_2|}{ρ_2} \right) \]

= 0.

Therefore (αx_k + βy_k) ∈ c^1(M).

Hence c^1(M) is a linear space.

PROOF OF THE THEOREM 6.3.2. The proof of this result is easy, so omitted.

PROOF OF THE THEOREM 6.3.3. (i) Let (x_k) ∈ c^1(M). Then there exists ρ>0 such that

\[I\lim \rho \left(\frac{|x_k|}{ρ} \right) = 0. \quad (6.4.1) \]

Let ε>0 and choose δ with 0<δ<1 such that M(t) < ε for 0 ≤ t ≤ δ. Write

\[y_k = M_2 \left(\frac{|x_k|}{ρ} \right) \]

and consider

\[\lim_{k \to N} M_1(y_k) = \lim_{k \to N} M_1(y_k) + \lim_{k \to N} M_1(y_k). \]

By the Remark 6.1.1, we have

\[\lim_{k \to N} M_1(y_k) \leq M_1(2 \lim_{k \to N} (y_k)). \quad (6.4.2) \]

For y_k > δ, we have

\[y_k < \frac{y_k}{δ} < 1 + \frac{y_k}{δ}. \]

Since M_1 is non-decreasing and convex, it follows that
\[M_i \left(y_k \right) < M_i \left(1 + \frac{y_k}{\delta} \right) < \frac{1}{2} M_i(2) + \frac{1}{2} M_i \left(\frac{2y_k}{\delta} \right). \]

Since \(M_i \) satisfies \(\Delta_2 \)-condition, we have
\[M_i \left(y_k \right) < \frac{1}{2} K \frac{y_k}{\delta} M_i(2) + \frac{1}{2} K \frac{y_k}{\delta} M_i(2) = K \frac{y_k}{\delta} M_i(2). \]

Hence
\[\lim_{k \in \mathbb{N}} M_i \left(y_k \right) \leq \max \left(1, K \delta^{-1} M_i(2) \right) \lim_{k \in \mathbb{N}} \left(y_k \right). \]

(6.4.3)

From (6.4.1), (6.4.2) and (6.4.3), we have
\[(x_k) \in c_0^i \left(M_1 \ast M_2 \right) \]

Thus \(c_0^i \left(M_2 \right) \subseteq c_0^i \left(M_1 \ast M_2 \right) \).

The other cases can be proved similarly.

\(ii \) Let \((x_k) \in c_0^i \left(M_1 \right) \cap c_0^i \left(M_2 \right) \). Then there exists \(\rho > 0 \) such that
\[I - \lim_{k} M_1 \left(\frac{|x_k|}{\rho} \right) = 0 \]
and
\[I - \lim_{k} M_2 \left(\frac{|x_k|}{\rho} \right) = 0. \]

The rest of the proof follows from the following equality
\[\lim_{k \in \mathbb{N}} (M_1 + M_2) \left(\frac{|x_k|}{\rho} \right) = \lim_{k \in \mathbb{N}} M_1 \left(\frac{|x_k|}{\rho} \right) + \lim_{k \in \mathbb{N}} M_2 \left(\frac{|x_k|}{\rho} \right). \]

PROOF OF THE COROLLARY 6.3.4. The proof of the result easy, so omitted.

PROOF OF THE RESULT 6.3.5. We shall prove the result for \(c_0^i \left(M \right) \). The other can be treated similarly.
Let \((x_k) \in c_0'(M)\). Then there exists \(p > 0\) such that
\[
I - \lim M\left(\frac{|x_k|}{\rho}\right) = 0.
\]
(6.4.4)

Let \((\alpha_k)\) be a sequence of scalars with \(|\alpha_k| \leq 1\), for all \(k \in \mathbb{N}\). Then the rest follows from (6.4.4) and the following inequality
\[
M\left(\frac{|\alpha_k x_k|}{\rho}\right) \leq |\alpha_k| M\left(\frac{|x_k|}{\rho}\right), \text{ for all } k \in \mathbb{N}, \text{ [by the remark 6.1.1.]}
\]
\[
\leq M\left(\frac{|x_k|}{\rho}\right), \text{ for all } k \in \mathbb{N}.
\]
The monotone of the spaces follows from the Lemma 6.2.1.

PROOF OF THE RESULT 6.3.6. The prove of this result follows from the following example.

EXAMPLE 6.4.1. For \(I = I_6\). Let \(M(x) = x^2\) for \(x \in [0, \infty)\). Consider the \(K^{th}\)-step space \(Z_K\) of \(Z\) defined as follows:

Let \((x_k) \in Z\) and \((y_k) \in Z_K\) be such that
\[
y_k = x_k, \text{ for } k \text{ even;}
\]
\[
y_k = 0, \text{ otherwise.}
\]
Consider the sequence \((x_k)\) as \(x_k = 1\), for all \(k \in \mathbb{N}\).

Then \((x_k) \in c'(M)\) but its \(K^{th}\)-step space preimage does not belong to \(c'(M)\).

Thus \(c'(M)\) is not monotone. Hence \(c'(M)\) is not solid by Lemma 6.2.1.
PROOF OF THE RESULT 6.3.7. The prove of this result follows from the following example.

EXAMPLE 6.4.2. Let \(M(x) = x^3 \), for \(x \in [0, \infty) \). Consider the sequences \((x_k)\) and \((y_k)\) defined as

\[
x_k = \frac{1}{k} \quad \text{and} \quad y_k = k, \quad \text{for all } k \in \mathbb{N}.
\]

Then \((x_k)\) belong to \(c' (M) \) and \(c'_0 (M) \), but \((y_k)\) does not belong to both \(c' (M) \) and \(c'_0 (M) \).

Hence the spaces are not convergence free.

PROOF OF THE RESULT 6.3.8. We prove that \(c'_0 (M) \) is sequence algebra. Rest of the result follows similarly.

Let \((x_k), (y_k) \in c'_0 (M)\). Then

\[
\lim_{k \to \infty} M\left(\frac{|x_k|}{\rho_1}\right) = 0, \text{ for some } \rho_1 > 0
\]

and

\[
\lim_{k \to \infty} M\left(\frac{|y_k|}{\rho_2}\right) = 0, \text{ for some } \rho_2 > 0.
\]

Therefore, for \(\rho = \rho_1 \rho_2 > 0 \), we have

\[
\lim_{k \to \infty} M\left(\frac{|x_k \cdot y_k|}{\rho}\right) = 0.
\]

Then \((x_k \cdot y_k) \in c'_0 (M)\).
Hence $c'_0(M)$ is sequence algebra.

PROOF OF THE THEOREM 6.3.9. Let $(x_k) \in c^I(M)$. Then we have

$$M \left(\frac{|x_k - L|}{\rho} \right) \leq \frac{1}{2} M \left(\frac{|x_k|}{\rho} \right) + M \frac{1}{2} \left(\frac{|L|}{\rho} \right),$$

(by the remark 6.1.1).

Taking supremum over k on both sides. Therefore we get $(x_k) \in \ell^I_{\infty}(M)$.

The inclusion $c'_0(M) \subset c^I(M)$ is obvious.

The inclusion is proper follows from the following example:

EXAMPLE 6.4.3. For $I = I_d$. Let $M(x) = x^2$, for all $x \in [0, \infty)$.

(a) Consider the sequence (x_k) defined by $x_k = 1$, for all $k \in \mathbb{N}$. Then $(x_k) \in c^I(M)$, but $(x_k) \notin c'_0(M)$.

(b) Consider the sequence (y_k) defined by:

$$y_k = \begin{cases} 2, & \text{if } k \text{ even;} \\ 0, & \text{otherwise.} \end{cases}$$

Then $(y_k) \in \ell^I_{\infty}(M)$, but $(y_k) \notin c^I(M)$.