CHAPTER-V

PARANORMED I-CONVERGENT SEQUENCE SPACES

5.1 INTRODUCTION

The notion of I-convergence was studied at the initial stage Kostyrko, Šalát and Wilczyński [69]. Later on it was studied by Šalát, Tripathy and Ziman ([109],[110]), Demirci [28] and others.

The notion of paranormed sequence space was studied at the initial stage by Nakano [94] and Simons [121]. Later on it was further investigated by Maddox [78], Lascarides ([71], [72]), Tripathy and Sen [138] and others.

5.2 DEFINITIONS AND NOTATIONS

A sequence space E is said to be solid (or normal) if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ and for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

A sequence space E is said to be symmetric if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where π is a permutation of \mathbb{N}.

A sequence space E is said to be a sequence algebra if $(x_k)(y_k) = (x_k \ast y_k) \in E$, whenever if $(x_k), (y_k) \in E$.

A sequence space E is said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$.
Let $K = \{k_1 < k_2 < \ldots \} \subseteq N$ and E be a sequence space. A K-step space of E is a sequence space $\lambda^E_K = \{(x_{k_n}) \in \mathcal{w}: (k_n) \in E\}$.

A canonical preimage of a sequence $\{x_{k_n}\} \in \lambda^E_K$ is a sequence $\{y_k\} \in \mathcal{w}$ defined as

$$y_k = \begin{cases} x_n, & \text{if } n \in K; \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space λ^E_K is a set of canonical preimages of all elements in λ^E_K, i.e., y is in canonical preimage of λ^E_K if and only if y is canonical preimage of some $x \in \lambda^E_K$.

A sequence space E is said to be monotone if it contains the canonical preimages of its step spaces.

Let (x_k) and (y_k) be two sequences. We say that $x_k = y_k$, for almost all k relatively I (a.a.r.I), if $\{k \in N: x_k \neq y_k\} \in I$.

In this chapter we introduce the following sequence spaces. Let $p = (p_k)$ a sequence of non-negative real numbers. Then for given $\varepsilon > 0$,

$$c_1^I(p) = \{(x_k) \in \mathcal{w}: \{k \in N: |x_k - L|^{p_k} \geq \varepsilon\} \in I, \text{ for some } L \in \mathbb{C}\};$$

$$c_0^I(p) = \{(x_k) \in \mathcal{w}: \{k \in N: |x_k|^{p_k} \geq \varepsilon\} \in I\};$$

$$\ell_\infty(p) = \{(x_k) \in \mathcal{w}: \sup_k |x_k|^{p_k} < \infty\}.$$

We write $m^I(p) = c^I(p) \cap \ell_\infty(p)$ and $m_0^I(p) = c_0^I(p) \cap \ell_\infty(p)$.

Lemma 5.2.1 (Kamthan and Gupta [62] page 53). A sequence space E is solid implies E is monotone.
LEMMA 5.2.2 (Šalát, Tripathy and Ziman [110] Lemma 2.5). Let $K \in \mathcal{F}(l)$ and $M \subseteq N$. If $M \in I$, then $M \cap K \subseteq I$.

LEMMA 5.2.3 (Kostyrko, Šalát and Wilczyński [69], Lemma 5.1). If $I \subset 2^N$ is a maximal admissible ideal, then for each $A \subset N$ we have $A \in I$, or $N-A \in I$.

LEMMA 5.2.4 (Lascarides [72], Proposition 1). Let $h = \inf_k p_k$, $H = \sup_k p_k$.

Then the following conditions are equivalent:

(i) $H < \infty$ and $h > 0$;
(ii) $c_0(p) = c_0$ or ℓ_∞ is equivalent to
(iii) ℓ_∞ is equivalent to
(iv) $c_0(p)$ is equivalent to
(v) $\ell_0(p)$ is equivalent to

5.3 MAIN RESULTS

THEOREM 5.3.1. Let $(p_k) \in \ell_\infty$. Then $c^0(p)$, $c_0(p)$, $m_0(p)$ and $m_0^0(p)$ are linear spaces.

THEOREM 5.3.2. Let $(p_k) \in \ell_\infty$, then the spaces $m_0(p)$ and $m_0^0(p)$ are paranormed spaces, paranormed by

$$g((x_k)) = \sup_k |x_k|^{p_k}, \text{where } M = \max(1, \sup_k p_k).$$

THEOREM 5.3.3. $m_0^0(p)$ is a closed subspace of $\ell_\infty(p)$.

PROPOSITION 5.3.4. The spaces $m_0(p)$ and $m_0^0(p)$ are nowhere dense subsets of $\ell_\infty(p)$.

RESULT 5.3.5. The spaces $c_0(p)$ and $m_0^0(p)$ are both solid and monotone.
RESULT 5.3.6. The spaces $c'(p)$ and $m'(p)$ are neither monotone nor solid, if I is neither maximal nor $I = I'$.

RESULT 5.3.7. If I is neither maximal nor $I = I'$, then the spaces $Z(p)$ are not symmetric, where $Z = c_0', c', m_0'$ and m'.

THEOREM 5.3.8. For any sequences (p_k) and (q_k), $m_0'(p) \supseteq m_0'(q)$ if and only if $\liminf_{k \in K} \frac{p_k}{q_k} > 0$, where $K \subseteq N$ such that $K \subseteq I$.

COROLLARY 5.3.9. For any two sequences (p_k) and (q_k), $m_0'(p) = m_0'(q)$ if and only if $\liminf_{k \in K} \frac{p_k}{q_k} > 0$ and $\liminf_{k \in K} \frac{q_k}{p_k} > 0$, where $K \subseteq N$ such that $K \subseteq I$.

THEOREM 5.3.10. Let $h = \inf_k p_k$ and $G = \sup_k p_k$, then the following results are equivalent:

(a) $G < \infty$ and $h > 0$;

(b) $c_0'(p) = c_0'$.

RESULT 5.3.11. The spaces $m_0'(p)$ and $m'(p)$ are not separable.

THEOREM 5.3.12. Let $G = \sup_k p_k < \infty$ and I is a maximal admissible ideal.

Then the following are equivalent:

(a) $(x_k) \in c'(p)$;

(b) there exists $(y_k) \in c'(p)$ such that $x_k = y_k$ for $a.a.k.r.I$;

(c) there exists $(y_k) \in c'(p)$ and $(z_k) \in c_0'(p)$ such that $x_k = y_k + z_k$, for all $k \in N$ and $\{k \in N : |y_k - L|^{|p_k|} \geq s\} \subseteq I$;

(d) there exists a subset $K = \{k_1 < k_2 < \cdots \}$ of N such that $K \subseteq I$ and $\lim_{n \to \infty} |x_{k_n} - L|^{|p_n|} = 0$.

5.4 THE PROOF OF THE RESULTS OF 5.3.

PROOF OF THE THEOREM 5.3.1. Let \((x_k), (y_k) \in c'(p)\) and \(\alpha, \beta\) be two scalars. Then for a given \(\varepsilon > 0\), we have

\[
\begin{align*}
\{k \in \mathbb{N} : |x_k - L_1|^p &> \frac{\varepsilon}{2M_1}, \text{ for some } L_1 \in \mathbb{C} \} \in I; \\
\{k \in \mathbb{N} : |y_k - L_2|^p &> \frac{\varepsilon}{2M_2}, \text{ for some } L_2 \in \mathbb{C} \} \in I,
\end{align*}
\]

where \(M_1 = D. \max \{1, \sup_k |\alpha|^p\}\); \(M_2 = D. \max \{1, \sup_k |\beta|^p\}\), \(D = \max (1, 2^{G_i})\) and \(G = \sup p_k \geq 0\).

Let \(A_1 = \{k \in \mathbb{N} : |x_k - L_1|^p < \frac{\varepsilon}{2M_1}, \text{ for some } L_1 \in \mathbb{C} \}\); \(A_2 = \{k \in \mathbb{N} : |y_k - L_2|^p < \frac{\varepsilon}{2M_2}, \text{ for some } L_2 \in \mathbb{C} \}\) be such that \(A_1, A_2 \in I\).

Then
\[
\begin{align*}
A_3 &= \{k \in \mathbb{N} : |(\alpha x_k + \beta y_k) - (\alpha L_1 + \beta L_2)|^p < \varepsilon \} \\
&\supseteq \{k \in \mathbb{N} : |\alpha|^p |x_k - L_1|^p < \frac{\varepsilon}{2M_1} |\alpha|^p D \} \\
&\cap \{k \in \mathbb{N} : |\beta|^p |y_k - L_2|^p < \frac{\varepsilon}{2M_2} |\beta|^p D \}.
\end{align*}
\]

Thus \(A_3^c = A_1^c \cup A_2^c \in I\).

Hence \((\alpha(x_k) + \beta(y_k)) \in c'(p)\).

Therefore \(c'(p)\) is a linear space.

The rest of the results follows similarly.

NOTE 5.4.1. For \((p_k) \in \ell_m\). Consider a set \(J = \{k_i: k_{i+1} \geq k_i + 1\} \text{ and } p_k > i, \text{ for } i = 1, 2, 3, \ldots\). Let \((x_k) \in c'(p)\) be defined by
Then for any scalar \(\lambda \geq 2 \); \(\lambda x_k \to \lambda \). We need to show that \(\lambda(x_k) \not\in c'(p) \).

If possible suppose \(\lambda(x_k) \in c'(p) \). Then there exists \(L \in C \) such that \(|\lambda x_k - L|^{p_k} \to 0 \), as \(k \to \infty \). Since \(p_k \to \infty \), as \(i \to \infty \). Therefore \(|\lambda - L|^{p_k} \leq 1 \), which is a contradiction, because \(|L|^{p_k} < 1 \). Thus \(\lambda(x_k) \not\in c'(p) \).

Proof of Theorem 5.3.2. The proof of this result is a routine work.

Proof of Theorem 5.3.3. Let \((x_k^{(n)}) \) be a Cauchy sequence in \(m'(p) \) such that \(x^{(n)} \to x \). To show that \(x \in m'(p) \).

Since \((x_k^{(n)}) \in m'(p) \), then there exists \(a_n \) such that

\[
\{k \in N : |x_k^{(n)} - a_n|^{p_k} \geq \varepsilon \} \in I.
\]

We need to show that

(i) \((a_n) \) converges to \(a \) (ii) if \(U = \{k \in N : |x_k - a|^{p_k} < \varepsilon \} \), then \(U^c \in I \).

(i) Since \((x_k^{(n)}) \) is a Cauchy sequence of \(m'(p) \) then for given \(\varepsilon > 0 \), there exists \(k_0 \in N \) such that

\[
\sup_k |x_k^{(n)} - x_k^{(m)}|^{p_k} < \frac{\varepsilon}{3}, \text{ for all } n, m \geq k_0.
\]

Given \(\varepsilon > 0 \), we have

\[
B_{mn} = \left\{ k \in N : |x_k^{(n)} - x_k^{(m)}|^{p_k} < \left(\frac{\varepsilon}{3} \right)^M \right\};
\]
\[B_m = \{ k \in \mathbb{N} : |x_k^{(m)} - a_m|^p \leq \left(\frac{\varepsilon}{3} \right)^M \} \]

and \[B_n = \{ k \in \mathbb{N} : |x_k^{(n)} - a_n|^p \leq \left(\frac{\varepsilon}{3} \right)^M \} \].

Then \[B^e_m, B^e_m, B^e_n \in \mathcal{I} \].

Let \[B^e = B^e_m \cup B^e_m \cup B^e_n \), where \[B = \{ k \in \mathbb{N} : |a_m - a_n|^p < \varepsilon \}. \ Then \[B^e \in \mathcal{I} \].

We choose \[k_0 \in B^e \]. Then for each \(n, m \geq k_0 \), we have

\[\{ k \in \mathbb{N} : |a_m - a_n|^p < \varepsilon \} \supseteq \left[\{ k \in \mathbb{N} : |a_m - x_k^{(m)}|^p < \left(\frac{\varepsilon}{3} \right)^M \} \right] \cap \left[\{ k \in \mathbb{N} : |x_k^{(m)} - x_k^{(n)}|^p < \left(\frac{\varepsilon}{3} \right)^M \} \right] \cap \left[\{ k \in \mathbb{N} : |x_k^{(n)} - a_n|^p < \left(\frac{\varepsilon}{3} \right)^M \} \right]. \]

Then \((a_n) \) is a Cauchy sequence of scalars in \(C \), so there exists a scalar 'a' in \(C \) such that \(a_n \to a \) as \(n \to \infty \).

(ii) Let \(0 < \delta < 1 \) be given. To show that if \(U = \{ k \in \mathbb{N} : |x_k - a|^p < \delta \} \), then \(U^e \in \mathcal{I} \).

Since \(x^{(n)} \to x \), then there exists \(q_0 \in \mathbb{N} \) such that

\[P = \{ k \in \mathbb{N} : |x_k^{(q_0)} - x_k)|^p < \left(\frac{\delta}{3D} \right)^M \} \quad (5.4.1) \]

implies \(P^e \in \mathcal{I} \).

The number \(q_0 \) can be so chosen that together with (5.4.1), we have

\[Q = \{ k \in \mathbb{N} : |a_{q_0} - a|^p < \left(\frac{\delta}{3D} \right)^M \} \text{ such that } Q^e \in \mathcal{I} \].

Again since \(\{ k \in \mathbb{N} : |x_k^{(q_0)} - a_{q_0}|^p \geq \delta \} \in \mathcal{I} \). Then we have a subset \(S \) of \(N \) such that

\(S^e \in \mathcal{I} \), where \(S = \{ k \in \mathbb{N} : |x_k^{(q_0)} - a_{q_0}|^p < \left(\frac{\delta}{3D} \right)^M \} \).

Let \(U^e = P^e \cup Q^e \cup S^e \), where \(U = \{ k \in \mathbb{N} : |x_k - a|^p < \delta \} \).
Therefore for each \(k \in U \), we have

\[
\{ k \in \mathbb{N} : |x_k - a|_{p_k} < \delta \} = \left[\left\{ k \in \mathbb{N} : (x_k) - (x_k^{(q_k)}) |_{p_k} < \left(\frac{\delta}{3D} \right)^M \right\} \cap \left\{ k \in \mathbb{N} : |a_{q_k} - a|_{p_k} < \left(\frac{\delta}{3D} \right)^M \right\} \right].
\]

Then the result follows.

Proof of the Proposition 5.3.4. The proof of this result is a routine work, so omitted.

Proof of the Result 5.3.5. Let \((x_k) \in c_0^I(p)\) and \((\alpha_k)\) be a sequence of scalars with \(|\alpha_k| \leq 1\), for all \(k \in \mathbb{N} \).

Since \(|\alpha_k x_k|_{p_k} \leq |x_k|_{p_k}\), for all \(k \in \mathbb{N} \).

Therefore the space \(c_0^I(p) \) is solid follows from the following inclusion relation

\[
\{ k \in \mathbb{N} : |x_k|_{p_k} \geq \varepsilon \} \supseteq \{ k \in \mathbb{N} : |\alpha_k x_k|_{p_k} \geq \varepsilon \}.
\]

Then the space \(c_0^I(p) \) is monotone by Lemma 5.2.1.

The other result follows similarly.

Proof of the Result 5.3.6. We prove this result with the help of the following example.

Example 5.4.1. Let \(I = I_\sigma \). Let \(p_k = 1 \), if \(k \) is even and \(p_k = 2 \), if \(k \) is odd.

Consider the \(K^{th} \) - step space \(W_K \) of \(W \) defined as follows:

Let \((x_k) \in W \) and \((w_k) \in W_K \) be such that

\[
w_k = \begin{cases} x_k, & \text{if } k \text{ odd;} \\ 1, & \text{otherwise.} \end{cases}
\]

Consider the sequence \((x_k)\) as \(x_k = k^{-1} \), for all \(k \in \mathbb{N} \).
Then \((x_k) \in Z(p) \), but its \(K^{th} \) step space preimage does not belong to \(Z(p) \), where \(Z = c' \) and \(m' \).

Thus \(Z(p) \) is not monotone. Hence \(Z(p) \) is not solid, by Lemma 5.2.1.

Proof of Theorem 5.3.7. We prove this result with the help of the following example

Example 5.4.2. Let \(I = I_0 \). Let \(A_0 = \{ k: k = s^2 \text{ or } t^3, \text{ for } s, t \in \mathbb{N} \} \), then

\[
\sum_{a_0 \in A_0} a_0^{-1} < \infty.
\]

Let \(p_k = 1 \), if \(k \) is even and \(p_k = 2 \), if \(k \) is odd.

Consider the sequence \((x_k) \) as follows:

\[
x_k = \begin{cases}
 k^{-1}, & \text{if } k = t^3, t \in \mathbb{N}; \\
 0, & \text{otherwise}.
\end{cases}
\]

Then the rearrangement \((y_k) \) of \((x_k) \) defined as

\[
(y_k) = (x_1, x_2, x_3, x_8, x_4, x_5, x_{27}, x_6, x_7, x_{64}, x_8, x_9, \ldots)
\]

Then \((y_k) \notin Z(p) \), but \((x_k) \in Z(p) \), where \(Z = c_0', c', m_0' \) and \(m' \).

Proof of Theorem 5.3.8. Let \(\liminf_{k \to \infty} \frac{p_k}{q_k} > 0 \) and \((x_k) \in m'_0(q) \).

Then there exists \(\beta > 0 \) such that \(p_k > \beta q_k \), for all sufficiently large \(k \in K \).

Since \((x_k) \in m'_0(q) \). For given \(\varepsilon > 0 \), we have

\[
B_0 = \{ k \in \mathbb{N}: |x_k|^q_k \geq \varepsilon \} \in I.
\]

Let \(G_0 = K \cup B_0 \). Then \(G_0 \subseteq I \).

Then for all sufficiently large \(k \in G_0 \),
Therefore, \((x_k) \in m'_0(p)\).

The converse part of the result follows obviously.

Proof of the Corollary 5.3.9. The proof of the result is easy, so omitted.

Proof of the Theorem 5.3.10. Suppose first that \(h > 0\) and \(G < \infty\), then the inequality

\[
\min (1, s^h) \leq s^p \leq \max (1, s^G)
\]

hold for any \(s > 0\) and for all \(k \in \mathbb{N}\).

Therefore the equivalent of (a) and (b) is obvious.

Proof of the Result 5.3.11. Let \(M = \{m_1 < m_2 < \cdots\}\) be a subset of \(N\) such that \(M \in I\).

Let \(p_k = 1\), if \(k \in M\); and \(p_k = 2\), otherwise.

Let \(P_0 = \{(x_k): x_k = 0\ or\ 1, \ for\ k = m_j, j \in N\ and\ x_k = 0,\ otherwise\}\).

Then \(M\) is uncountable.

Consider the class of open balls \(B_1 = \{B(z, \frac{1}{2}): z \in P_0\}\). Let \(C_1\) be an open cover of \(m'_0(p)\) or \(m'(p)\) containing \(B_1\). Since \(B_1\) is uncountable, so \(C_1\) cannot be reduced to a countable sub cover for \(m'_0(p)\) as well as \(m'(p)\). Thus \(m'_0(p)\) and \(m'(p)\) are not separable.

Proof of the Theorem 5.3.12. (a) \(\Rightarrow\) (b). Let \((x_k) \in c'(p)\). Then there exists \(L \in C\) such that
Let \((m_i)\) be an increasing sequence with \(m_i \in \mathbb{N}\) such that
\[
\{m > m_i : \{k \leq m : |x_k - L|^{p_k} \geq \frac{1}{i}\}\} < \frac{1}{i}.
\]
Define a sequence \((y_k)\) as follows:
\[
y_k = x_k, \text{ for all } k \leq m_1; \text{ for } m_i < k \leq m_{i+1}, i \in \mathbb{N}.
\]
Let \(y_k = x_k\), if \(|x_k - L|^{p_k} < \varepsilon\) and \(y_k = L\), otherwise.

Then \((y_k) \in c'(p)\) and from the following inclusion
\[
\{k \leq m : x_k \neq y_k\} \subseteq \{k \in \mathbb{N} : |x_k - L|^{p_k} \geq \varepsilon\} \in I.
\]
We get \(x_k = y_k\), for a.a.k.r.I.

\((b) \Rightarrow (c)\). For \((x_k) \in c'(p)\), then there exists \((y_k) \in c'(p)\) such that \(x_k = y_k\), for a.a.k.r.I.

Let \(K = \{k \in \mathbb{N} : x_k \neq y_k\}\), then \(K \in I\).

Define \((z_k)\) as follows:
\[
z_k = \begin{cases} x_k - y_k, & \text{if } k \in K; \\ 0, & \text{if } k \notin K \end{cases}
\]
Then \((z_k) \in c'_0(p)\) and so \((y_k) \in c'(p)\).

\((c) \Rightarrow (d)\). Suppose \((c)\) holds. Let \(\varepsilon > 0\) be given.

Let \(P_1 = \{k \in \mathbb{N} : |z_k|^{p_k} \geq \varepsilon\}\) and \(K = P_1 = \{k_1 < k_2 < \cdots\} \in I\).

Then we have
\[
\lim_{n \to \infty} |x_{k_n} - L|^{p_{k_n}} = 0.
\]

\((d) \Rightarrow (a)\). Let \(K = \{k_1 < k_2 < \cdots\} \subset \mathbb{N}\) be such that \(K \in I\) and \(\lim_{n \to \infty} |x_{k_n} - L|^{p_{k_n}} = 0\).

Then for any \(\varepsilon > 0\), and Lemma 5.2.2, we have
\[
\{k \in \mathbb{N} : |x_k - L|^{p_k} \geq \varepsilon\} \subseteq K^c \cup \{k \in K : |x_k - L|^{p_k} \geq \varepsilon\}.
\]
Thus \((x_k) \in c'(p)\).