Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1-65</td>
</tr>
<tr>
<td>II. Materials and methods</td>
<td>66-75</td>
</tr>
<tr>
<td>III. Results and discussion on the biodegradation of 2-Chlorophenol</td>
<td>76-107</td>
</tr>
<tr>
<td>IV. Results and discussion on the biodegradation of 4-Chlorophenol</td>
<td>108-123</td>
</tr>
<tr>
<td>V. Summary and conclusions</td>
<td>124-128</td>
</tr>
<tr>
<td>References</td>
<td>129-146</td>
</tr>
<tr>
<td>List of publications</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I

1.0. Introduction 1
1.1. Spectrum of recalcitrant xenobiotic compounds 1
1.2. Biological Hazards from xenobiotic exposure 2
1.3. Halogenated aromatic pollutants 4
1.4. Halogenated compounds persistent contaminants in marine sediments 5
 1.4.1. Brominated aromatic pollutants 6
 1.4.2. Fluorinated pollutants 8
 1.4.3. Chlorinated aromatic pollutants 9
1.5. Applications of chlorinated aromatics 9
1.6. Chlorophenols 11
1.7. Physico-chemical properties of chlorophenols 11
 1.7.1. Molecular weight 12
 1.7.2. Water solubility 12
 1.7.3. Polarity 12
 1.7.4. Specific density 12
 1.7.5. Octanol-water partition coefficient \((K_{ow})\) 13
 1.7.6. Vapor pressure 13
 1.7.8. Acid Base Properties 13
 1.7.9. Organoletic properties 14
 1.7.10. Bioaccumulation 14
1.8. Uses of chlorophenols 14
1.9. Sources of haloaromatics 19
 1.9.1. Biogenic sources 20
1.9.2. Geogenic

1.9.3. Anthropogenic

1.10. Discharge of chlorophenols into the environment

1.11. Environmental transport, distribution, and transformation of chlorophenols.

1.12. Human Exposure to chlorophenols

1.13. Body diffusion of chlorophenols

1.14. Fate of chlorophenols in the environment

1.15. Health effects and risk assessment

1.16. Degradation

1.17. Natural processes for the removal of haloaromatics

1.18. Biodegradability of chlorophenols

1.19. Factors influencing biodegradabilities of the haloaromatics

1.20. Microbial diversity involved in degradation of haloaromatics

1.21. Bioremediation

1.22. Sequential degradation of chlorinated compounds

1.23. Role cometabolism in the biodegradation of chlorinated compounds

1.24. Bioavailability as a limiting factor in bioremediation

1.25. Microbial bioremediation

1.25.1. Aerobic bacteria as bioremediation agents

1.25.2. Anaerobic bacteria as bioremediation agents

1.25.3. Methylotrophic bacteria as bioremediation agents

1.25.4. Ligninolytic fungi as bioremediation agents

1.25.5. Anoxygenic phototrophic bacteria as bioremediation agents

1.26. Biodegradation of haloaromatic compounds
1.26.1. Halogen cycle in nature 41
1.26.2. Halorespiration 41
1.27. Mechanisms of microbial degradation of haloaromatics 43
1.27.1. Oxygenolytic 43
1.27.2. Hydrolytic dehalogenation 44
1.27.3. Reductive dehalogenation 45
1.28. Anaerobic degradation 49
1.29. Aerobic biodegradation 51
1.30. Photobiodegradation 52
1.30.1. Phototrophic bacteria and halogenated aromatic compounds 53
1.30.2. Dehalogenation by phototrophic bacteria 53
1.31. Enzymes of haloaromatic degradation 54
1.31.1. Hydrolytic dehalogenases 55
1.31.2. Phenol hydroxylases 56
1.31.3. Hydroxyquinol 1, 2-dioxygenase 57
1.31.4. Chlorocatechol 1, 2-dioxygenase 58
1.31.5. Reductive dehalogenases 58
1.32. Immobilization of microorganisms 60
1.33. Nature of immobilization matrices 62
1.33.1. Alginates 62
1.33.2. Agar 63
1.33.3. Polyacrylamide 64
CHAPTER II

2.0. Materials and Methods 66
2.1. Chemicals 66
2.2. Bacterial isolation and characterization 67
 2.2.1. Fatty Acid Methyl Esters and Gas Chromatography analysis 67
 2.2.2. 16S rDNA sequence and phylogeny analysis 67
2.3. Media and growth conditions 67
2.4. In vivo absorption spectrum of photobacterial isolate 68
2.5. Degradation of chlorophenols by photobacterial isolate 68
2.6. Extraction and characterization of metabolites 69
2.7. GC-MS analysis of intermediate compounds 70
2.8. Measurement of chloride ions 70
2.9. Replacement culture technique 70
2.10. Chlorophenol tolerance of photobacterial isolate 71
2.11. Protein induction in the photobacterial culture during degradation studies 71
 2.11.1. Estimation of protein content of the cell free extracts 71
 2.11.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 72
2.12. Enzyme assays 73
 2.12.1 Preparation of cell free enzyme extract 73
 2.12.2. Chlorophenol Dehalogenase (CD) assay 73
 2.12.3. Chlorophenol-NADPH-Oxido-Reducetase (CNOR) assay 73
2.13. Extraction and isolation of plasmid DNA from photobacterial isolate 74
2.14. Immobilization of microorganisms 74
 2.14.1. Alginate entrapment of cells 74
2.14.2 Agar entrapment of cells 75
2.15. Batch Culture of Immobilized Cells 75
2.16. Batch culture of immobilized cells 75

CHAPTER III 76-107
3.0. Results on the biodegradation of 2-chlorophenol 76
3.1. Screening and isolation of micro-organisms degrading 2-Chlorophenol 76
 3.1.1. FAME-GC analysis of photobacterial isolate 77
 3.1.2. 16s rDNA sequence and phylogeny analysis of
 consortia members 78
 3.1.3. 16s rDNA sequence and phylogeny analysis of a gram
 positive member of the consortium 81
3.2. In vivo absorption spectrum of the phototrophic bacterium R. p. aluirstis. 84
3.3. Degradation of 2-CP by Rhodopseudomonas paluirstis 85
3.4. Characterization of metabolites formed during the biodegradation
 of 2-CP by Rhodopseudomonas paluirstis 89
3.5. Measurement of chloride ions from the spent medium of R. paluirstis 90
3.6. Effect of 2-chlorophenol on the growth of Rhodopseudomonas paluirstis 90
3.7. Protein induction studies 91
3.8. Enzyme activities in cell free extracts of Rhodopseudomonas paluirstis 92
3.9. Isolation of plasmid DNA from Rhodopseudomonas paluirstis 92
3.10. Immobilization of Rhodopseudomonas paluirstis 94
3.11. Discussion on biodegradation of 2-chlorophenol 96
CHAPTER IV

4.0. Results on the biodegradation of 4-chlorophenol

4.1. Degradation of 4-Chlorophenol by *Rhodopseudomonas palustris* 108

4.2. Characterization of metabolites from spent medium of *R. palustris* 110

4.3. Dehalogenation of 4-Chlorophenol by *Rhodopseudomonas palustris* 112

4.4. Determination of the tolerance of *Rhodopseudomonas palustris* to 4-Chlorophenol. 112

4.5. Protein induction profile during the biodegradation of 4-CP by *R. palustris* 113

4.6. Enzyme activities in *Rhodopseudomonas palustris* cell free extracts 113

4.7. Isolation of plasmid DNA from *Rhodopseudomonas palustris* 114

4.8. Immobilization of *Rhodopseudomonas palustris* 115

4.9. Discussion 118

CHAPTER V

5.0. Summary and Conclusions 124

REFERENCES 129-146