TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction .. 1
1.2 Optical Fibre Sensor .. 2
1.3 Classification of Optical Fibre Sensor 4
1.4 Advantages of Optical Fibre Sensor 8
1.5 Applications of Optical Fibre Sensors 9
1.6 Literature Survey .. 10
1.7 Problem Statement ... 14
1.8 Objectives of the Research 15
1.9 Organisation of the Thesis 15

CHAPTER 2: PROPAGATION OF LIGHT IN A FIBRE WAVEGUIDE

2.1 The Wave Nature of Light 17
2.2 Wave Theory of Optical Waveguide 18
2.3 Attenuation Due to Curvature Loss in a Multimode Optical Fibre 22
2.4 Principle of bare and Tapered Optical Fibre Refractometer 25

CHAPTER 3: MONITORING OF MOISTURE IN TRANSFORMER OIL USING A BARE AND BENT MULTIMODE OPTICAL FIBRE REFRAC TOMETER

3.1 Introduction .. 28
3.2 Effect of Moisture in Transformer oil 28
3.3 Theory of Macrobending 31
3.4 Artificial Neural Network 34
3.5 Multilayer Feed Forward (MLFF) Network 35
Chapter 3: Description of the Fibre-Optic Refractometer

3.6 Description of the Fibre-Optic Refractometer 37
3.7 Experimental Setup for the Instrumentation System 38
3.8 Experimental Procedure 40
3.9 Results and Discussion 41
3.10 Conclusions 46

Chapter 4: An Improved Optical-Fibre Refractometer

4.1 Introduction 47
4.2 Fundamental Operating Principle of the Refractometer 50
4.3 Description of the Optical-Fibre Sensor Probe 54
4.4 Scheme of the Instrumentation System 55
4.5 Measurement Procedure 61
4.6 Experimental Results and Discussion 62
4.7 Conclusion 66

Chapter 5: Use of Improved Optical-Fibre Refractometer for the Monitoring of Degradation of Lubricating Oil

5.1 Introduction 69
5.2 Principle of Bare, Tapered and Bent Multimode Refractometer 76
5.3 Relation between Refractive Index, Viscosity and Temperature 77
5.4 Description of the Optical Fibre Sensor Probe (OFSP) 81
5.5 Scheme of the Instrumentation System for the Optical Fibre Sensor 83
5.6 Experimental Setup for the Instrumentation System 84
5.7 Measurement Procedure for the Optical Sensor 85
5.8 Results and Discussion 87
5.9 Conclusion 91
CHAPTER 6: CONCLUSIONS AND SCOPE FOR FUTURE WORKS

6.1 Conclusions 93
6.2 Scope for Future Work 97
Bibliography 98
Appendix 1: Abbreviations Used 107
Appendix 2: List of Publications 109