CHAPTER II

DECOMPOSITION OF GRAPHS INTO INTERNALLY DISJOINT TREES

2.1. INTRODUCTION

In [21] F.R.K. Chung defines the parameter \(\gamma(G) \) of a graph \(G \) as the minimum number of trees covering all the edges of \(G \). In [24] Foregger, M.F. and Foregger, T.H. define a parameter \(\gamma'(G) \) as the minimum number of subsets into which the vertex set of \(G \) can be partitioned so that each subset induces a tree. Here we define a graphoidal tree cover of \(G \) as a partition of edges into internally vertex disjoint trees and \(\gamma'_T(G) \) as the minimum number of internally vertex disjoint trees covering all the edges of \(G \).

In this chapter we find \(\gamma'_T(G) \) for some standard graphs in section 2.2. In section 2.3 we study some relationship between \(\gamma'_T(G) \) and \(\gamma'(G) \). In [1] Acharya and Sampathkumar defined a graphoidal cover as a partition of edges into internally disjoint (not necessarily open) paths. We consider only open paths and call a partition of edges into internally disjoint paths as a graphoidal path cover (acyclic graphoidal cover in[8]). We define a graphoidal tree \(d \)-cover as a partition of edges into internally disjoint trees in which each tree has a maximum degree bounded by \(d \). The minimum cardinality of such \(d \)-covers is denoted by \(\gamma'_T^{(d)}(G) \). Clearly a graphoidal tree 2-cover is a graphoidal path cover. We find \(\gamma'_T^{(d)}(G) \) for some standard graphs.
2.2. GRAPHOIDAL TREE COVER

2.2.1. Definition – A graphoidal tree cover \(\mathcal{G} \) of \(G \) is a collection of non-trivial trees in \(G \) such that

(i) Every vertex is an internal vertex of at most one tree.

(ii) Every edge is in exactly one tree.

Let \(G \) denote the set of all graphoidal tree covers of \(G \). Since \(E(G) \) is a graphoidal tree cover, we have \(G \neq \emptyset \).

Let \(\gamma_r(G) = \min_{\mathcal{G}} |\mathcal{G}| \).

Then \(\gamma_r(G) \) is called the graphoidal tree covering number of \(G \). Any graphoidal tree cover \(\mathcal{G} \) of \(G \) for which \(|\mathcal{G}| = \gamma_r(G) \) is called a minimum graphoidal tree cover.

2.2.2. Example : Consider a graph \(G \) given in the figure.

![Graph Diagram](image)

Let \(T_1, T_2 \) and \(T_3 \) be the trees given below:
Clearly $\mathcal{S} = \{T_1, T_2, T_3\}$ is a graphoidal tree cover of G. Moreover it is a minimum graphoidal tree cover. Hence $\gamma_T(G)=3$.

2.2.3. Remark: If $\delta(G) > \gamma_T$, then every vertex is an internal vertex of some tree in a minimum graphoidal tree cover.

2.2.4. Observation: If G is a (p,q) graph then $\gamma_T(G) \geq \left\lceil \frac{q}{p-1} \right\rceil$.

2.2.5. From the above observation we have the following:

If $\delta(G) >0$, then $\gamma_T(G) > \frac{\delta}{2}$.

We first determine the graphoidal tree covering number of a complete graph.

2.2.6. Theorem [43]: $\gamma_T(K_n) = \left\lceil \frac{n}{2} \right\rceil$.

Proof: From 2.2.5, it follows that $\gamma_T(K_n) \geq \left\lceil \frac{n}{2} \right\rceil$. We give a construction for the reverse inclusion. Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ First, let n be even, say $n=2k$.

For \(i=1,2,\ldots, k \), let \(T_i \) be the tree shown in fig. 3. In \(T_i \), \(v_i \) is adjacent to \(v_{i+1} \), \(\ldots, v_{i+k-1}, v_{i+k} \) and \(v_{i+k} \) is adjacent to \(v_{i+k+1}, \ldots, v_{i+2k-1} \) (subscripts modulo \(n \)).

Clearly, \(\mathcal{Z} = \{T_1, T_2, \ldots, T_k\} \) is a graphoidal tree cover for \(K_n \). Therefore, \(\gamma_T(K_n) = \left\lceil \frac{n}{2} \right\rceil \) if \(n \) is even. (See fig. 4 for the case \(n=8 \)). Here we note that each \(T_i \) in the above graphoidal tree cover \(\mathcal{Z} \) is a spanning tree.

![Fig 3](image)

For \(n \) odd, say \(2k+1 \), we have \(\left\lceil \frac{2k + 2}{2} \right\rceil = k+1 \) spanning trees which form a graphoidal tree cover for \(K_{n+1} \). Fix a vertex and delete it from each tree in

![Fig 4](image)
the above tree decomposition for K_{n+1}. Leaving out the isolated vertices, we get a graphoidal tree cover for K_n with $k+1=\left\lfloor \frac{2k + 1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor$ trees. Hence $\gamma_\tau(K_n) = \left\lfloor \frac{n}{2} \right\rfloor$ if n is odd.

Next we consider two relatively easy cases for which $\gamma_\tau(G) = 2$.

2.2.7. Theorem: For a unicyclic graph G, $\gamma_\tau(G) = 2$.

Proof: Since G contains a cycle, $\gamma_\tau(G) \geq 2$. Also $\Psi = \{G-e, e\}$ is a graphoidal tree cover for G, where e is an edge on the cycle of G. Hence $\gamma_\tau(G) = 2$.

2.2.8. Theorem: For the wheel $W_n (n \geq 4)$, $\gamma_\tau(W_n) = 2$.

Proof: The graph $W_n (n \geq 4)$ is shown in fig. 5.

Now $\{T_1, T_2\}$ is a graphoidal tree cover for W_n, where $T_1 = \{(x_0, x_i) : 1 \leq i \leq n-2\} \cup \{(x_{n-2}, x_{n-1})\}$ and $T_2 = (x_0, x_{n-1}, x_1, x_2, \ldots, x_{n-2})$. Since $\gamma_\tau(W_n) \geq 2$, it follows that $\gamma_\tau(W_n) = 2$. •
We now turn to the case of complete bipartite graphs, beginning with a general result on the diameter of trees in a minimum graphoidal tree cover. The following standard notation is used for the partite sets of \(K_{m,n} \) with \(m \leq n \): \(X = \{x_1, x_2, \ldots, x_m\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \).

2.2.9. Lemma: If a minimum graphoidal tree cover \(\mathcal{T} \) of \(K_{m,n} \) contains a tree with a path of length \(\geq 5 \), then it also contains a tree with exactly one edge.

Proof: Let \(T \in \mathcal{T} \) contain a path \(P = (x_1, y_1, x_2, y_2, x_3, y_3, \ldots) \) where \(x_1 \in X \) and \(y_j \in Y \). Since \(y_1 \) and \(x_3 \) are internal in \(T \), these cannot be internal in any other member of \(\mathcal{T} \). Therefore \(T_1 = \{(y_1, x_3)\} \in \mathcal{T} \). Hence the lemma.

2.2.10. Lemma: If \(m \leq n \leq 2m-3 \), \(\gamma_T(K_{m,n}) \geq \left\lceil \frac{m+n}{3} \right\rceil \).

Proof: Suppose \(\gamma_T(K_{m,n}) = r \) with \(r < \left\lceil \frac{m+n}{3} \right\rceil \). Let \(\mathcal{T} \) be a minimum graphoidal tree cover of \(K_{m,n} \). Since \(m > \frac{m+n}{3} > r \) (as \(n \leq 2m-3 \)), by 2.2.3, we have every vertex is an internal vertex of a tree in \(\mathcal{T} \).

Claim 1: No tree in \(\mathcal{T} \) can have more than two internal vertices from \(X \) with a common neighbour from \(Y \).

Suppose \(x_1, x_2, \ldots, x_k \) (\(k \geq 3 \)) are all adjacent to \(y_1 \) in \(T_1 \) of \(\mathcal{T} \). Then the sum of degrees of \(x_1, x_2, \ldots, x_k \) in \(T_1 \) is at most \(n+k-1 \). But each \(x_i \) (\(i=1,2,\ldots, k \))
is an end vertex in at most $r-1$ other members of I. So they have at most $n+k-1+k(r-1)$ total adjacencies in I. Since $r < \frac{m+n}{3}$, $n+k-1 + k(r-1) < \frac{3n+3k-3+k(m+n)-3k}{3} < \frac{n(2k+3)}{3} - 1$ ($m \leq n$)

\[= nk - \left(\frac{n(k-3)}{3} + 1\right) < nk (k \geq 3),\]

a contradiction. Hence we have claim 1.

Claim 2: There exists a minimum graphoidal tree cover I' such that no tree in I' has a path of length ≥ 5.

Suppose $T_1 \in I$ has a path $(x_1, y_1, x_2, y_2, x_3, y_3, ...)$). Then by the previous lemma, a tree T_2 in I has just the single edge y_1x_3. Let T_1' be the tree containing x_2 obtained by removing the edge y_1x_2 from T_1. Let T_2' be the tree $(T_1-T_1') \cup T_2$. Let I' be the graphoidal tree cover obtained from I after replacing T_1,T_2 by T_1', T_2' respectively. If a tree in I' again contains a path of length ≥ 5 we repeat the above process and so on. Finally we get the required minimum graphoidal tree cover I'. Hence claim 2.

Now we can assume that no tree in I has a path of length ≥ 5.

Claim 3: No tree in I can have more than two internal vertices from Y with a common neighbour from X.

23
Suppose there is a tree \(T_1 \) in \(\mathcal{I} \) containing \(k \) internal vertices \(y_1, y_2, \ldots, y_k \) \((k \geq 3)\) with a common neighbour \(x_1 \). Since \(m > r_1 \) and every vertex is an internal vertex of a tree in \(\mathcal{I} \), there is a tree in \(\mathcal{I} \), say, \(T_2 \) containing at least two vertices from \(X \) as internal vertices. By claim 2, the internal vertices of a tree in \(\mathcal{I} \) form a star and so the internal vertices from \(X \) in \(T_2 \) have a common neighbour from \(Y \). By claim 1, \(T_2 \) has exactly two internal vertices \(x_2 \) and \(x_3 \) from \(X \) with a common neighbour \(y \) from \(Y \). Between \(x_2, x_3 \) and \(y_1, y_2, \ldots, y_k \) there are \(2k \) edges in \(K_{m,n} \). Clearly \(x_2 \) and \(x_3 \) can be made adjacent with two \(y \)'s in \(T_1 \). Let it be \(y_1 \) and \(y_2 \). Now \(y_1, y_2, \ldots, y_k \) can be made adjacent with \(x \)'s in \(T_2 \). But it will cover exactly \(k+2 \) edges (out of \(2k \) edges) and so by the definition of graphoidal tree cover, each uncovered edge is a tree in \(\mathcal{I} \). Without loss of generality let \(T_3, T_4, \ldots, T_k \) be the trees with edges \((y_3, x_1 \), \((y_4, x_1 \), \ldots, \((y_k, x_3 \) respectively where \(l_i \in \{2,3\}, 3 \leq i \leq k \). By claim 2 the internal vertices of \(T_1 \) form a star. Let \(T'_1 \) be the tree obtained from \(T_1 \) by removing all the edges incident with \(y_i \) \((3 \leq i \leq k)\). Let \(T'_1 \) be the tree formed by the remaining edges of \(T_1 \) after the removal. Now each \(T_i \) in \(\mathcal{I} \) is replaced by \(T'_i \cup T_i \) for \(3 \leq i \leq k \). Also replace \(T_1 \) in \(\mathcal{I} \) by \(T'_1 \). If \(\mathcal{I} \) again contains a tree having more than two internal vertices from \(Y \) with a common neighbour from \(X \). We repeat the process and so on. Hence we have claim 3.
From Claim 1, Claim 2 and Claim 3, it follows that no tree in \(\mathfrak{T} \) has more than three internal vertices. Since every vertex of \(K_{m,n} \) must be an internal vertex of a tree in \(\mathfrak{T} \) and \(\gamma_T(K_{m,n}) = r \), we have only \(3r \) \((<m+n)\) internal vertices in \(\mathfrak{T} \). This is a contradiction. Hence \(\gamma_T(K_{m,n}) \geq \left\lceil \frac{m+n}{3} \right\rceil \).

2.2.11. Theorem: If \(m \leq n \leq 2m-3 \), then \(\gamma_T(K_{m,n}) = \left\lceil \frac{m+n}{3} \right\rceil \). Furthermore, if \(n > 2m-3 \), then \(\gamma_T(K_{m,n}) = m \).

Proof: By 2.2.10, \(\gamma_T(K_{m,n}) \geq \left\lceil \frac{m+n}{3} \right\rceil \). Next we proceed to prove \(\gamma_T(K_{m,n}) \leq \left\lceil \frac{m+n}{3} \right\rceil \) where \(3 \leq m \leq n \leq 2m-3 \).

Let the partite set of \(K_{m,n} \) be \(V_1 \) and \(V_2 \) where \(V_1 = \{x_1, x_2, ..., x_m\} \) and \(V_2 = \{y_1, y_2, ..., y_n\} \).

Let \(r = \left\lfloor \frac{2m-n}{3} \right\rfloor = \frac{2m-n-k}{3} \) where \(k \) is 0, 1 or 2

Define for \(1 \leq i \leq r \)

\[
P_i = \{(x_i, y_i, x_{r+i})\} \cup \{(y_i, x_j) : j \neq i, r+i; 1 \leq j \leq m - k\}
\]

\[
\cup \{(x_i, y_j) : r < j \leq m - r - k\} \cup \{(x_{r+i}, y_j) : m - r - k < j \leq n - k\}
\]

For \(1 \leq i \leq m - 2r - k \) we define

\[
P_{i+r} = \{(y_{r+i}, x_{2r+i}, y_{m-r-k+i})\} \cup \{(x_{2r+i}, y_j) : j \neq r+i, m - r - k+i, r < j \leq n - k\}
\]

\[
\cup \{(y_{r+i}, x_j) : r+1 \leq j \leq 2r\} \cup \{(y_{m-r-k+i}, x_j) : 1 \leq j \leq r\}
\]
When \(k = 1 \)

\[
P_{m-r} = \{(x_m, y_n)\} \cup \{(x_m, y_j) : 1 \leq j \leq n-1\} \cup \{(y_n, x_j) : 1 \leq j \leq m-1\}
\]

When \(k = 2 \)

\[
P_{m-r-1} = \{(x_{m-1}, y_{n-1})\} \cup \{(x_{m-1}, y_j) : 1 \leq j \leq n-2\} \cup \{(y_{n-1}, x_j) : 1 \leq j \leq m-2\}
\]

\[
P_{m-r} = \{(x_m, y_n)\} \cup \{(x_m, y_j) : 1 \leq j \leq n-1\} \cup \{(y_n, x_j) : 1 \leq j \leq m-1\}
\]

Clearly \(\mathcal{I} = \{P_1, P_2, \ldots, P_{m-r}\} \) is a graphoidal tree cover for \(K_{m,n} \).

Therefore \(\gamma_T(K_{m,n}) \leq m - r = \frac{m + n + k}{3} = \left\lfloor \frac{m + n}{3} \right\rfloor \)

Let \(n \geq 2m - 2 \). Let \(V(K_{m,n}) = X \cup Y \) where \(X = \{x_1, x_2, \ldots, x_m\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \). Let \(n = 2m - 2 + k, k \geq 0 \). Suppose that \(\gamma_T(K_{m,n}) \neq m \). Then there exists a graphoidal tree cover \(\mathcal{I} \) with at most \(m-1 \) trees. Since \(\delta > m-1 \), it follows that every vertex is an internal vertex of a tree in \(\mathcal{I} \). If \(x_i \) is an internal vertex of a tree \(T \) in \(\mathcal{I} \) then \(\deg_T(x_i) \geq 2m - 2 + k - (m-2) = m+k \). This implies that in any minimum graphoidal tree cover exactly one vertex of \(X \) should be internal in a tree. But there are \(m \) vertices and \(|\mathcal{I}| \leq m - 1 \). This leads to a contradiction. Hence \(\gamma_T(K_{m,n}) \geq m \). Clearly, \(\gamma_T(K_{m,n}) \leq m \) and so \(\gamma_T(K_{m,n}) = m \).

The following examples illustrate \(\gamma_T(K_{m,n}) = \left\lfloor \frac{m + n}{3} \right\rfloor \).
2.2.12. Examples

(i) Consider \(K_{4,5} \). Clearly \(k=0 \) and \(r=1 \).

(ii) Consider \(K_{8,9} \). Clearly \(r = 2 \) and \(k = 1 \).
(iii) Consider $K_{12,13}$. Clearly $r = 3$ and $k = 2$.

Fig. 8
Our first result on the graphoidal tree covering number of graph products is for grid graphs.

2.2.13. Theorem: For $m,n \geq 2$, $\gamma_T(\mathbf{P}_m \times \mathbf{P}_n) = 2$

Proof: Let $V(\mathbf{P}_m) = \{u_1, u_2, \ldots, u_m\}$ and $V(\mathbf{P}_n) = \{v_1, v_2, \ldots, v_n\}$

Define $w_{ij} = \{(u_i, v_j) : 1 \leq i \leq m, 1 \leq j \leq n\}$

Case (i) when n is odd.

Let $n>3$. (For $n=3$ see Fig.9)

$T_1 = \{(w_{ij}, w_{ij+1}) : 1 \leq j \leq n-1\} \cup \{(w_{ij}, w_{i+1,j}) : 1 \leq i \leq m-1, j \equiv 1 \pmod{2}, 1 \leq j \leq n\}$

$\cup \{(w_{ij}, w_{ij+1}) : 1 \leq j \leq n - 2, j \equiv 1 \pmod{2}, 2 \leq i \leq m-1\} \cup \{(w_{m1}, w_{m2})\}$

$\cup \{(w_{mn-1}, w_{mn})\}$

$T_2 = \{(w_{mj}, w_{mj+1}) : 2 \leq j \leq n - 2\} \cup \{(w_{ij}, w_{i+1,j}) : 1 \leq i \leq m - 1, j \equiv 0 \pmod{2}, 2 \leq j \leq n - 1\} \cup \{(w_{mj}, w_{mj+1}) : 2 \leq j \leq n - 1, j \equiv 0 \pmod{2}, 2 \leq i \leq m - 1\}$

Case (ii) when n is even

$T_1 = \{(w_{ij}, w_{i+1,j}) : 1 \leq j \leq n - 2\} \cup \{(w_{ij}, w_{i+1,j}) : 1 \leq i \leq m-1, j \equiv 1 \pmod{2}, 1 \leq j \leq n-1, j \equiv 1 \pmod{2}, 2 \leq i \leq m-1\} \cup \{(w_{m1}, w_{m2})\}$

$T_2 = \{(w_{mj}, w_{mj+1}) : 2 \leq j \leq n - 1\} \cup \{(w_{ij}, w_{i+1,j}) : 1 \leq i \leq m - 1, j \equiv 0 \pmod{2}, 2 \leq j \leq n - 2, j \equiv 0 \pmod{2}, 2 \leq i \leq m - 1\} \cup \{(w_{1,n-1}, w_{1,n})\}$

Now $\mathcal{Z} = \{T_1, T_2\}$ is a graphoidal tree cover for $\mathbf{P}_m \times \mathbf{P}_n$ and so $\gamma_T(\mathbf{P}_m \times \mathbf{P}_n) = 2$.

29
Fig. 9

$P_2 \times P_3$

$P_m \times P_3, m > 2$

Fig. 10

$P_2 \times P_{10}$

Fig. 11

$P_4 \times P_4$
In Fig. 10 and Fig. 11 thick lines form the tree T_1 and dotted lines form the tree T_2 for the two cases above.

2.2.14. Remark

In the above theorem the maximum degree for each tree in the graphoidal tree cover constructed is 3 and also every vertex of $P_m \times P_n$ (except when $m=2$ and $n=3$) is either internal in T_1 or internal in T_2.

2.2.15. Theorem $\gamma_t(P_n \times C_m) = 2$ for $m \geq 3$, $n \geq 2$

Proof: Let $V(P_n) = \{u_1, u_2, \ldots, u_n\}$ and $V(C_m) = \{v_1, v_2, \ldots, v_m\}$

Define $w_{ij} = \{(u_i, v_j) : 1 \leq i \leq n, 1 \leq j \leq m\}$

Case (i) when m is even

Let $T_1 = \{(w_{ij}, w_{i+1,j}) : 1 \leq i \leq n-1, j \equiv 1 \pmod{2}, 1 \leq j \leq m-1\}$

$\cup \{(w_{ij}, w_{i+1,j}) : j \equiv 1 \pmod{2}, 1 \leq j \leq m-1, 1 \leq i \leq n-1\}$

$\cup \{(w_{1,j}, w_{1,j+1}) : j \equiv 0 \pmod{2}, 1 \leq j \leq m-2\} \cup \{(w_{ij}, w_{i+1,j}) : j \equiv 0 \pmod{2}, 1 \leq j \leq m-2\}$

Let $T_2 = \{(w_{i,j}, w_{i,j+1}) : j \equiv 0 \pmod{2}, 1 \leq j \leq m-2, 2 \leq i \leq n\}$

$\cup \{(w_{i,j}, w_{i+1,j}) : 1 \leq i \leq n-1, j \equiv 0 \pmod{2}, 1 \leq j \leq m\}$

$\cup \{(w_{n,j}, w_{n,j+1}) : j \equiv 1 \pmod{2}, 3 \leq j \leq m-1\}$

$\cup \{(w_{i,m}, w_{i,1}) : 1 \leq i \leq n\}$

Case (ii) when m is odd

Let $T_1 = \{(w_{i,j}, w_{i,j+1}) : 1 \leq j \leq m-1, i \equiv 1 \pmod{2}, 1 \leq i \leq n\}$

$\cup \{(w_{i,j}, w_{i+1,j}) : i \equiv 1 \pmod{2}, 1 \leq i \leq n-1, 1 \leq j \leq m-1\}$

$\cup \{(w_{i,1}, w_{i+1,1}) : i \equiv 0 \pmod{2}, 1 \leq i \leq n-1\}$
Let $T_2 = \{(w_{i,j}, w_{i,j+1}) : 1 \leq j \leq m - 1, i \equiv 0 \pmod{2}, 1 \leq i \leq n\}$

$\cup \{(w_{i,j}, w_{i+1,j}) : i \equiv 0 \pmod{2}, 2 \leq i \leq n - 1, 2 \leq j \leq m\}$

$\cup \{(w_{i,m}, w_{i+1,m}) : 1 \leq i \leq n - 1, i \equiv 1 \pmod{2}\}$

$\cup \{(w_{i,m}, w_{i+1}) : 1 \leq i \leq n, i \equiv 1 \pmod{2}\}$

In cases (i) and (ii), $\mathcal{G} = \{T_1, T_2\}$ is a graphoidal tree cover for $P_n \times C_m$. Hence $\gamma_T(P_n \times C_m) = 2$.

Here again, in Fig. 12 and Fig. 13 thick lines form the tree T_1 and dotted lines form the tree T_2 for the two cases above.

2.2.16. Remark: In the above theorem, the maximum degree of each tree in the graphoidal tree cover constructed is 3 and also every vertex of $P_n \times C_m$ ($m \geq 3$) is internal in T_1 or T_2.

![Diagram of $P_n \times C_m$ with thick and dotted lines forming the trees T_1 and T_2.]
2.2.17. Theorem: $\gamma_T(C_m \times C_n) = 3$, $m,n \geq 3$.

Proof: Since $C_m \times C_n$ is 4-regular, by 2.2.5 it follows that $\gamma_T(C_m \times C_n) > 2$.

Let $V(C_m) = \{u_1, u_2, \ldots, u_m\}$ and $V(C_n) = \{v_1, v_2, \ldots, v_n\}$.

Define $w_{i,j} = \{(u_i, v_j) : 1 \leq i \leq m, 1 \leq j \leq n\}$. Now consider the minimum graphoidal tree cover $\mathcal{T} = \{T_1, T_2\}$ of $P_{m-1} \times C_n$ as in 2.2.15.

Case (i) When n is even

To the tree T_2, add vertices $w_{m,2}$ and $w_{m,4}$. Then add a vertex $w_{m,3}$ adjacent to $w_{1,3}$, $w_{m-1,3}$, $w_{m,2}$ and $w_{m,4}$. The only additional internal vertex this
creates is $w_{m,3}$. Now take a third tree as $T_3 = \{(w_{m,i-1}, w_{m,i}) : 2 \leq i \leq n ; i \neq 3,4\}$
$\cup \{(w_{m,1}, w_{m,n})\} \cup \{ (w_{m,i}, w_{1,i} , (w_{m,i}, w_{m-1,i}) : 1 \leq i \leq n ; i \neq 3\}.

Case (i) When n is odd

To the tree T_2, add vertices $w_{m,1}$ and $w_{m,3}$. Then add a vertex $w_{m,2}$ adjacent to $w_{1,2}, w_{m-1,2}, w_{m,1}, w_{m,3}$. The only additional internal vertex this creates is $w_{m,2}$. Now take a third tree as $T_3 = \{(w_{m,i-1}, w_{m,i}) : 4 \leq i \leq n\} \cup \{(w_{m,1}, w_{m,n})\} \cup \{ (w_{m,i}, w_{1,i} , (w_{m,i}, w_{m-1,i}) : 1 \leq i \leq n ; i \neq 2\}.$

2.2.18. Theorem: For any non-trivial tree T, $\gamma_T(T \times K_2) = 2$.

Proof: Let T_1 be one copy of T and let T_2 be the tree got from $T \times K_2$ by removing the edges of T_1. $\mathcal{E} = \{T_1, T_2\}$ is clearly a graphoidal tree cover for $T \times K_2$ and hence $\gamma_T(T \times K_2) = 2$.

We recall that $\pi(G)$ is the minimum number of subsets into which $E(G)$ can be partitioned so that the graph formed by each of the subsets is a tree. $\gamma(G)$ is the minimum number of subsets into which $E(G)$ can be partitioned so that the graph formed by each of the subsets is a forest. Clearly $\gamma(G) \leq \pi(G) \leq \gamma_T(G)$.

2.2.19. Theorem: Let G be a graph having n vertices, e edges and k components, $k \leq n$. Then $k - 1 + \left\lceil \frac{e}{n - k} \right\rceil \leq \gamma_T(G)$.

Proof follows from 1.26.

From 1.33, 1.34 and 1.35 we get the following.
2.2.20. Theorem

1. \(\gamma_T(G) \geq \left\lceil \frac{n+1}{2} \right\rceil \) for an \(n \)-regular graph \(G \)

2. \(\gamma_T(L(K_n)) \geq n - 1 \)

3. \(\gamma_T(L(K_{m,n})) \geq \left\lceil \frac{m+n-1}{2} \right\rceil \)

4. \(\gamma(K_n) = \tau(K_n) = \gamma_T(K_n) = \left\lceil \frac{n}{2} \right\rceil \)

From the definition of graphoidal tree cover, it is also observed that \(\tau(G) = \gamma_T(G) \) for all graphs with \(\Delta \leq 3 \). so we have the following results from 1.27, 1.28 and 1.30.

2.2.21. Theorem: If \(G \) is a 2-connected cubic graph, \(p \geq 8 \), then \(\gamma_T(G) \leq \left\lfloor \frac{p}{4} \right\rfloor \).

2.2.22. Theorem: If \(G \) is a 3-connected cubic graph, \(p \geq 12 \), then \(\gamma_T(G) \leq \left\lfloor \frac{p}{6} \right\rfloor \).

2.2.23. Theorem: If \(G \) is a cyclically 4-edge connected cubic graph with \(p \) vertices, \(8 \leq p \leq 16 \) then \(\gamma_T(G) = 2 \).

2.2.24. Theorem: If a graph \(G \) has a perfect matching, then \(\gamma_T(G) \leq \left\lfloor \frac{p}{2} \right\rfloor \).

Proof: Let \(M = \{e_1, e_2, \ldots, e_k\} \) be a perfect matching of \(G \). Clearly \(p = 2k \).

Without loss of generality assume that \(e_i = (v_{i}, v_{k+i}) \), \(1 \leq i \leq k \). Let \(K_p \) be the complete graph with the vertex set \(\{v_1, v_2, \ldots, v_p\} \). \(G \) is a subgraph of \(K_p \). Let \(T_i, 1 \leq i \leq k \), be the trees as in Fig. 3. In \(T_i \), \(v_i \) is adjacent to \(v_{i+1}, v_{i+2}, \ldots, v_{i+k-1} \), \(v_{i+k} \) and \(v_{i+k} \) is adjacent to \(v_{i+k+1}, v_{i+k+2}, \ldots, v_{i+2k-1} \) (subscripts modulo \(n \)).

Clearly \(\mathcal{F} = \{T_1, T_2, \ldots, T_k\} \) is a graphoidal tree cover for \(K_p \). Remove the edges
of $E(K_p) - E(G)$ from each T_i ($1 \leq i \leq k$) of \mathcal{I} and the resulting isolated vertices to get a graphoidal tree cover for G. This cover still contains k trees since $e_i \in E(G), 1 \leq i \leq k$. Hence $\gamma_T(G) \leq k = \frac{p}{2}$.

2.2.25. Corollary: If G is a hamiltonian graph, then $\gamma_T(G) \leq \left\lfloor \frac{p}{2} \right\rfloor$.

Proof: Case (i): Let $|V(G)| = 2k$.

Clearly G has a perfect matching. By the above theorem, $\gamma_T(G) \leq \left\lfloor \frac{p}{2} \right\rfloor$.

Case (ii): Let $|V(G)| = 2k+1$.

Let $v \in V(G)$. $|V(G-v)| = 2k$. Let C be a hamiltonian cycle of G. $C - v$ is a hamiltonian path on $2k$ vertices. So we can find a perfect matching for $G - v$.

By the above theorem we can find a graphoidal tree cover $\mathcal{I} = \{T_1, T_2, ..., T_k\}$ for $G - v$. Clearly, $T_{k+1} = G - \bigcup_{i=1}^{k} T_i$ is a star at v. Then $\{T_1, T_2, ..., T_k, T_{k+1}\}$ is a graphoidal tree cover for G. Hence $\gamma_T(G) \leq k+1 = \left\lfloor \frac{p}{2} \right\rfloor$.

We note down the following corollary to be used later.

2.2.26. Corollary: If for all points v of G, $\deg(v) \geq \frac{p}{2}$ where $p \geq 3$, then

$$\gamma_T(G) \leq \left\lfloor \frac{p}{2} \right\rfloor.$$

Proof: By theorem 1.36, G is hamiltonian and hence the result follows.
We believe that the following is true

Conjecture: \(\gamma_T(G) \leq \left\lfloor \frac{p}{2} \right\rfloor \).

2.3. RELATIONSHIP BETWEEN \(\tau'(G) \) AND \(\gamma_T(G) \)

In [24] Foregger, M F and Foregger, T.H defined \(\tau'(G) \) as the minimum number of subsets into which \(V(G) \) can be partitioned so that each subset induces a tree. In this section we try to find some relationship between \(\tau'(G) \) and \(\gamma_T(G) \).

2.3.1. Theorem:
Let \(p \geq 4 \) and let \(\mathcal{S} = \{T_1, T_2, T_3, \ldots, T_n\} \) be a minimum graphoidal tree cover of a graph \(G \) with \(|E(T_j)| = 1 \) for some \(j \) and \(|E(T_i)| > 1 \) for all \(i \neq j \). Then we can always find a minimum graphoidal tree cover \(\mathcal{S}' = \{T_1', T_2', \ldots, T_n'\} \) with \(|E(T_i')| > 1 \) for all \(i \).

Proof: Let \(T_j = \{xy\} \)

Case (i): Suppose at least one of the vertices \(x \) and \(y \), say \(x \), is internal in a tree of \(\mathcal{S} \).

First assume that \(x \) is internal in a tree \(T_i \) of \(\mathcal{S} \). If \(y \not\in V(T_i) \) then replacing \(T_i \) by \(T_i \cup T_j \) and removing \(T_j \) from \(\mathcal{S} \) we get a graphoidal tree cover \(\mathcal{S}' \) with \(|\mathcal{S}'| < |\mathcal{S}| \). Hence \(y \in V(T_i) \). Let \((w, x, z, \ldots, y)\) be a path in \(T_i \). Let \(C_1 \) and \(C_2 \) be the two components of \(T_i - (xz) \) containing \(x \) and \(y \) respectively. Replace \(T_i \) and \(T_j \) by \(C_2 \cup (xz) \) and \(C_1 \cup T_j \) respectively so that
both of them have at least two edges. Now \mathcal{I} is still a minimum graphoidal tree cover and $|E(T)| > 1$ for every $T \in \mathcal{I}$.

Case (ii)

Suppose both x and y are external vertices in \mathcal{I}. If $x \in V(T_i)$ and $y \not\in V(T_i)$ then as in case (i) we get a graphoidal tree cover \mathcal{I}' with $|\mathcal{I}'| < |\mathcal{I}|$.

Hence either $x, y \in V(T)$ or $x, y \not\in V(T)$ for every T in \mathcal{I}. Let $x, y \in V(T_r), T_r \in \mathcal{I}$.

Suppose $|E(T_r)| > 2$. Let $e = (xz)$ be an edge in T_r. Replace T_r and T_j by $T_r - e$ and $T_j \cup \{e\}$ respectively and the result is true in this case. So let us assume that $|E(T_i)| = 2$ for some $T_i \in \mathcal{I}$ and $x, y \in V(T_i)$. Suppose $T_i = (xyz) \in \mathcal{I}$.

Then $\deg(z) \geq 3$ in G. For, suppose $\deg(z) = 2$ in G. Since G is connected and $p \geq 4$, we must have at least one of the vertices x, y is of degree ≥ 3. Since x or y alone can not be a member of a tree in \mathcal{I} and $x, y \in V(T_i), V(T_i)$ we have $\deg(x) \geq 3$ and $\deg(y) \geq 3$.

Let x and y be external vertices in a tree T_r of \mathcal{I} ($r \neq i, j$). Replace T_r and T_j by $T_r \cup (xz)$ and $T_j \cup (zy)$ respectively. Now $\{T_1, T_2, ... , T_{i-1}, T_{i+1}, ... , T_n\}$ is clearly a graphoidal tree cover for G. This is a contradiction to the minimality of \mathcal{I}. Hence $\deg(z) \geq 3$ in G. Now, z must be external in some tree T_r of \mathcal{I}. Clearly $x, y \in V(T_r)$. Suppose $x, y \not\in V(T_r)$.

Replace T_r and T_j by $T_r \cup (xz)$ and $T_j \cup (zy)$ respectively in \mathcal{I}. Now $\{T_1, T_2, ... , T_{i-1}, T_{i+1}, ... , T_n\}$ is clearly a graphoidal tree cover for G. This is a contradiction to the minimality of \mathcal{I}. It shows that $x, y \in V(T_r)$. Since x, y and z are external vertices in T_r we have $|E(T_r)| \geq 3$. Let e be an edge in T_r.
containing z. Replace \(T_i \) and \(T_j \) by \(\{ T_i - \{xz\} \} \cup \{ e \} \) and \(T_j \cup \{\{xz\}\} \) respectively. Now \(\mathcal{I} \) is a minimum graphodial tree cover and \(|E(T)| > 1 \) for every \(T \in \mathcal{I} \).

2.3.2. Proposition

If \(p \geq 4 \), then there exists a minimum graphoidal tree cover of a connected graph \(G \), in which every tree has more than one edge.

Proof: Let \(\mathcal{I} \) be a minimum graphoidal tree cover of \(G \) and let \(\mathcal{I} = \{ T_1, T_2, \ldots, T_n \} \). Let us assume that \(T_i = \{ e_i \} \), \(1 \leq i \leq k \) and \(|E(T_j)| > 1 \) for \(k+1 \leq j \leq n \). Let \(G' = G - \{ e_1, e_2, \ldots, e_k \} \). Clearly \(\mathcal{I}' = \mathcal{I} - \{ T_1, T_2, \ldots, T_k \} \) is a graphoidal tree cover for \(G' \). Suppose \(G' \) is a disconnected graph. Then the number of components \(\omega(G') \) is greater than one. If \(\omega(G' \cup e_i) = \omega(G') \) for every \(i \in \{ 1, 2, \ldots, k \} \) then \(G \) is disconnected. Hence we can choose \(e_i = (x_i, y_i) \) for some \(i \in \{ 1, 2, \ldots, k \} \) such that \(\omega(G' \cup e_i) < \omega(G') \). Let \(G_1', G_1'' \) be the components of \(G' \) such that \(G_1' \cup G_1'' \cup e_i \) is connected. Without loss of generality assume that \(x_i \in G_1' \), \(y_i \in G_1'' \). If at all \(x_i \) is internal in a tree of \(\mathcal{I} \), let it be in a tree \(T \) (of \(\mathcal{I} \)) in \(G_1' \). Clearly \(\mathcal{I}_1 = \{ \mathcal{I} - \{ T, T_j \} \} \cup \{ T \cup T_i \} \) is a graphoidal tree cover of \(G \) and \(|\mathcal{I}_1| < |\mathcal{I}| \). This is a contradiction. Hence \(G' \) is connected. Take \(G_1 = G' \cup \{ e_i \} \). Clearly \(\mathcal{I}_1 = \mathcal{I}' \cup \{ T_i \} \) is a minimum graphoidal tree cover for \(G_1 \) and \(|\mathcal{I}_1| = n - k + 1 \). For, suppose \(\gamma_r(G_1) < n - k + 1 \) and let \(\mathcal{I}'' \) be a minimum graphoidal tree cover for \(G_1 \). Then \(|\mathcal{I}''| < n - k + 1 \).
Since $G = G_1 \cup \{e_2, \ldots, e_k\}$, $\mathcal{J}''' = \mathcal{J}'' \cup \{T_2, \ldots, T_k\}$ is a graphoidal tree cover for G and $|\mathcal{J}'''| = |\mathcal{J}''| + k - 1 < n - k + 1 + k - 1 = n$. This is a contradiction to the minimality of \mathcal{J}. Hence $\gamma_T(G_1) = n - k + 1$. By 2.3.1, there exists a minimum graphoidal tree cover \mathcal{J}_1' of G_1 in which every tree has more than one edge and $|\mathcal{J}_1'| = |\mathcal{J}_1| = n - k + 1$. Let $G_2 = G_1 \cup \{e_2\}$. Proceeding as above, we find a minimum graphoidal tree cover \mathcal{J}_2 of G_2 in which every tree has more than one edge. Finally, we get $G = G_n = G_{n-1} \cup \{e_n\}$ and by a similar argument as above, we find a minimum graphoidal tree cover \mathcal{J}_n of $G = G_n$ in which $|E(T)| > 1$ for every $T \in \mathcal{J}_n$.

2.3.3. Lemma: Let $p(G) \geq 4$. Let \mathcal{J} be a graphoidal tree cover of G such that $|E(T)| > 1$ for every tree $T \in \mathcal{J}$. Let $i(T)$ be the set of internal vertices of T. Then $<i(T)>$ – the subgraph induced by $i(T)$ – is a subgraph of T and it is a tree for every $T \in \mathcal{J}$.

\textbf{Proof}: If $|i(T)| = 1$ then clearly the result is true. Let $|i(T)| > 1$. Let $x, y \in i(T)$ and $xy \in E(G)$. Suppose $xy \notin E(T)$. Then there exists T' of \mathcal{J} such that $T' = \{(xy)\}$, by the definition of graphoidal tree cover. By our assumption this is not possible. Hence $<i(T)>$ is a subgraph of T and it is a tree. Moreover, it is got by removing all the pendant vertices of T.

2.3.4. Theorem: Let G be a (p, q) graph with $p \geq 4$. Then $\tau'(G) \leq \gamma_T(G)$.

40
Proof: By Corollary 2.3.2, there exists a minimum graphoidal tree cover \mathcal{F} such that $|E(T)| > 1$ for all $T \in \mathcal{F}$ and $|\mathcal{F}| = n$ (1)

Let $\mathcal{F} = \{T_1, T_2, T_3, \ldots, T_n\}$.

Case (i): If every vertex is an internal vertex of a tree of \mathcal{F}, then $V(G) = i(T_1) \cup \ldots \cup i(T_n)$ is clearly a vertex partition of G. By 2.3.3 $<i(T_j)>$ is a sub graph of T_j and is a tree for $1 \leq j \leq n$. Hence $\tau'(G) \leq n \leq \gamma_T(G)$.

Case (ii): Let x be one of the vertices which is not internal in any tree of \mathcal{F}. Let $x \in V(T_k)$ and $v \in i(T_k)$ such that $xv \in E(T_k)$. Since x is not internal in any tree of \mathcal{F} and v is not internal in any tree except T_k, we have $<i(T_k) \cup \{x\}>$ is a tree. For, if $xu \in E(G)$ and $xu \notin E(T_k)$ where $u \neq v$ in $i(T_k)$, then by the definition of graphoidal tree cover there exists T' of \mathcal{F} such that $T' = \{xu\}$. This is a contradiction to our assumption in (1).

Let x, y be non–internal vertices in any tree of \mathcal{F}. Let $x, y \in V(T_k)$. If $xy \in E(G)$ then there exists T' of \mathcal{F} such that $T' = \{xy\}$. This is a contradiction to our assumption in (1). Clearly, in this case $<i(T_k) \cup \{x, y\}>$ is a tree. In this way we adjoin every such vertex to an $i(T_k)$. We make sure that each such vertex is adjoined to only one $i(T_k)$. These induced subgraphs give rise to a partition of $V(G)$ and these induced subgraphs form $n = \gamma_T(G)$ trees. Hence $\tau'(G) \leq n = \gamma_T(G)$.

\[41\]
From 2.2.6, 2.2.13, 2.2.15 and 2.2.18 it follows that $\gamma_T(G) = \tau'(G)$ for the following graphs K_n, $P_m \times P_n$, $P_n \times C_m$ and $T \times K_2$.

2.4. GRAPHOIDAL TREE d–COVER

2.4.1. Definition

A **graphoidal tree d–cover** ($d \geq 2$) \mathcal{Z} of G is a collection of non–trivial trees in G such that

(i) Every vertex is an internal vertex of at most one tree

(ii) Every edge is in exactly one tree.

(iii) For every tree $T \in \mathcal{Z}$, $\Delta(T) \leq d$.

Let \mathcal{G} denote the set of all graphoidal tree d–covers of G. Since $E(G)$ is a graphoidal tree d–cover, we have $\mathcal{G} \neq \emptyset$.

Let $\gamma_T^{(d)}(G) = \min_{\mathcal{Z} \in \mathcal{G}} |\mathcal{Z}|$.

Then $\gamma_T^{(d)}(G)$ is called the **graphoidal tree d–covering number** of G.

Any graphoidal tree d–cover \mathcal{Z} of G for which $|\mathcal{Z}| = \gamma_T^{(d)}(G)$ is called a minimum graphoidal tree d–cover.

Clearly a graphoidal tree 2–cover is a graphoidal path cover and a graphoidal tree d–cover ($d \geq \Delta$) is a graphoidal tree cover. Note that $\gamma_T(G) \leq \gamma_T^{(d)}(G)$ for all $d \geq 2$.

We first determine a lower bound for $\gamma_T^{(d)}(G)$. It is easy to observe that $\gamma_T^{(d)}(G) \geq \Delta - d + 1$. Define $n_d = \min_{\mathcal{Z} \in \mathcal{G}_d} n_3$ where \mathcal{G}_d is a collection of all
graphoidal tree d–covers and n_γ is the number of vertices which are not internal vertices of any tree in \mathcal{A}.

2.4.2. Theorem: For $d \geq 2$, $\gamma^{(d)}_T(G) \geq q - (p - n_d)(d - 1)$.

Proof: Let $Ψ$ be a minimum graphoidal tree d–cover of G such that $n_Ψ$ vertices of G are not internal in any tree of $Ψ$. Let k be the number of trees in $Ψ$ having more than one edge. For a tree in $Ψ$ having more than one edge, fix a root vertex which is not a pendant vertex. Assign direction to the edges of the k trees in such a way that the root vertex has in degree zero and every other vertex has in degree 1. In $Ψ$, let l_1 be the number of vertices of out degree d and l_2 be the number of vertices of out degree less than or equal to $d-1$ (and > 0) in these k trees. Clearly $l_1 + l_2$ is the number of internal vertices of trees in $Ψ$ and so $l_1 + l_2 = p - n_Ψ$. In each tree of $Ψ$ there is at most one vertex of out degree d and so $l_1 \leq k$. Hence we have

$$\gamma^{(d)}_T(G) \geq k + q - (l_1d + l_2(d - 1))$$

$$= k + q - (l_1 + l_2)(d - 1) - l_1$$

$$= k + q - (p - n_Ψ)(d - 1) - l_1$$

$$\geq q - (p - n_d)(d - 1).$$

2.4.3. Corollary: $\gamma^{(d)}_T(G) \geq q - p(d - 1)$

Now we determine graphoidal tree d–covering number of a complete graph.
2.4.4. Theorem

For \(p \geq 4 \), \(\gamma^{(d)}(K_p) = \begin{cases}
\frac{p}{2} (p - 2d + 1) & \text{if } d < \frac{p}{2} \\
\left\lfloor \frac{p}{2} \right\rfloor & \text{if } d \geq \frac{p}{2}
\end{cases} \)

Proof: Let \(d \geq \frac{p}{2} \). We know that \(\gamma^{(d)}(K_p) \geq \gamma_p(K_p) = \left\lfloor \frac{p}{2} \right\rfloor \) by 2.2.6.

Case (i) Let \(p \) be even, say \(p = 2k \). We write \(V(K_p) = \{0, 1, 2, ..., 2k-1\} \).

Consider the graphoidal tree cover \(\mathcal{T} = \{T_1, T_2, ..., T_k\} \) where each \(T_i \) (\(i = 1, 2, ..., k \)) is a spanning tree with edge set defined by

\[E(T_i) = \{(i - 1, j) : j = i, i+1, ..., i+k-1\} \cup \{(k+i-1, s) : s = j \pmod{2k}, j = i+k, i+k+1, ..., i+2k-2\} \]

Now \(|\mathcal{T}| = k = \frac{p}{2} \). Note that \(\Delta(T_i) = k \leq d \), \(i = 1, 2, ..., k \) and hence

\[\gamma^{(d)}(K_p) = \left\lfloor \frac{p}{2} \right\rfloor. \]

Case (ii) Let \(p \) be odd, say \(p = 2k + 1 \). We write \(V(K_p) = \{0, 1, 2, ..., 2k\} \).

Consider the graphoidal tree cover \(\mathcal{T} = \{T_1, T_2, ..., T_{k+1}\} \) where each \(T_i \) (\(i = 1, 2, ..., k \)) is a tree with edge set defined by

\[E(T_i) = \{(i - 1, j) : j = i, i+1, ..., i+k-1\} \cup \{(k+i-1, s) : s = j \pmod{2k+1}, j = i+k, i+k+1, ..., i+2k-1\} \]

\[E(T_{k+1}) = \{(2k, j) : j = 0, 1, 2, ..., k-1\} \]
Now $|\mathcal{J}_2|=k+1 = \left\lfloor \frac{p}{2} \right\rfloor$. Note that the degree of every internal vertex of T_i is either k or $k+1$ and so $\Delta(T_i) \leq d$, $i=1$, 2, ..., $k+1$. Hence $\gamma_{T_i}^{(d)}(K_p) = \left\lfloor \frac{p}{2} \right\rfloor$ if $d \geq \frac{p}{2}$. Let $d < \frac{p}{2}$. By 2.4.3, $\gamma_{T_i}^{(d)}(K_p) \geq q + p - pd = \frac{p(p-1)}{2} + p - pd = \frac{p}{2} (p - 2d + 1)$.

Remove the edges from each T_i in $\mathcal{J}_1(\mathcal{J}_2)$ when p is even (odd) so that every internal vertex is of degree d in the new tree T_i' formed by this removal. The new trees so formed together with the removed edges form \mathcal{J}_3.

If p is even, then \mathcal{J}_3 is constructed from \mathcal{J}_1 and $|\mathcal{J}_3| = k+q-k(2d-1)$

$$= k+ \frac{2k(2k-1)}{2} - k(2d-1) = k(2k-2d+1) = \frac{p}{2} (p - 2d + 1)$$

If p is odd, then \mathcal{J}_3 is constructed from \mathcal{J}_2 and $|\mathcal{J}_3| = k+1+q-k(2d-1)-d$

$$= k + 1 + \frac{(2k+1)2k}{2} - 2kd + k - d = (2k + 1) (1 + k-d)$$

$$= \frac{p}{2} (p + 1 - 2d).$$

Hence $\gamma_{T_i}^{(d)}(K_p) = \frac{p}{2} (p + 1 - 2d)$.

The following examples illustrate the above theorem.

2.4.5. Examples

Consider K_6. Take $d=3=\frac{p}{2}$ and $V(K_6) = \{v_0, v_1, v_2, v_3, v_4, v_5\}$
\[\gamma_T^{(3)}(K_6) = 3 \]

Take \(d = 2 < \frac{p}{2} \)

\[\gamma_T^{(2)}(K_6) = \frac{6}{2} \cdot (6+1-2\times2) = 9 \]

Consider \(K_7 \). Take \(d = 4 = \left\lceil \frac{p}{2} \right\rceil \) and \(V(K_7) = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6\} \)

\[\gamma_T^{(4)}(K_7) = 4 = \left\lceil \frac{p}{2} \right\rceil \].
Take \(d=3 < \frac{p}{2} \).

\[\gamma_r^{(3)}(K_r) = \frac{7}{2} (7+1-2\times3)=7 \]

We now turn to some cases of complete bipartite graph.

2.4.6. Theorem: If \(n,m \geq 2d \) then \(\gamma_r^{(d)}(K_{m,n}) = p + q - pd= mn - (m+n)(d-1). \)

Proof: By 2.4.3, \(\gamma_r^{(d)}(K_{m,n}) \geq p + q - pd = mn - (m+n)d + m + n. \)

Consider \(G = K_{2d,2d} \). Let \(V(G)=X_1 \cup Y_1 \) where \(X_1={x_1, x_2, \ldots, x_{2d}} \) and \(Y_1={y_1, y_2, \ldots, y_{2d}} \). Clearly \(\deg(x_i) = \deg(y_j) = 2d, 1 \leq i, j \leq 2d. \)

For \(1 \leq i \leq d \), we define

\[T_i = \{(x_i, y_j): 1 \leq j \leq d \}, \quad T_{d+i} = \{(x_{i+d}, y_j): d+1 \leq j \leq 2d \} \]
\[T_{2d+i} = \{(y_i, x_j): d+1 \leq j \leq 2d \} \text{ and } T_{3d+i} = \{(y_{i+d}, x_j): 1 \leq j \leq d \} \]

Clearly \(\mathcal{S} = \{T_1, T_2, \ldots, T_{4d}\} \) is a graphoidal tree \(d \)-cover for \(G. \)

Now consider \(K_{m,n} (m, n \geq 2d) \). Let \(V(K_{m,n}) = X \cup Y \) where \(X = \{x_1, x_2, \ldots, x_m\} \)
and \(Y = \{y_1, y_2, \ldots, y_n\}. \) Now for \(4d+1 \leq i \leq 4d + m - 2d = m + 2d, \) we define
$T_i = \{(x_{i-2d}, y_j) : 1 \leq j \leq d\}$.

For $m+2d+1 \leq i \leq m+n$, we define $T_i = \{(y_{i-m}, x_j) : 1 \leq j \leq d\}$.

Then $\mathcal{E} = \{T_1, T_2, \ldots, T_{4d}, T_{4d+1}, \ldots, T_{m+2d}, T_{m+2d+1}, \ldots, T_{m+n}\} \cup \{E(G) - E(T_i) : 1 \leq i \leq m+n\}$ is a graphoidal tree d–cover for $K_{m,n}$. Hence $|\mathcal{E}| = p+q - pd$ and so $\gamma_{T}(d)(K_{m,n}) \leq p+q - pd = mn - (m+n)(d-1)$ for $m,n \geq 2d$.

The following example illustrates the above theorem.

2.4.7. Example: Consider $K_{8,10}$ and take $d=4$.

The diagrams illustrate the graphoidal tree d–cover for $K_{m,n}$ with $d=4$. The figure shows the graphoidal tree for $K_{8,10}$ with the specified d value.
2.4.8. Theorem: \(\gamma_T^{(d)}(K_{2d-1,2d-1}) = p + q - pd = 2d - 1 \)

Proof: By 2.4.3, \(\gamma_T^{(d)}(K_{2d-1,2d-1}) \geq p + q - pd = 2d - 1 \).

For \(1 \leq i \leq d - 1 \), we define

\[T_i = \{ (x_i, y_j) : 1 \leq j \leq d \} \cup \{ (y_i, x_{d+j}) : 1 \leq j \leq d - 1 \} \cup \{ (x_{d+1}, y_{d+j}) : 1 \leq j \leq d - 1 \} \]

Let \(T_d = \{ (x_d, y_j) : 1 \leq j \leq d \} \cup \{ (y_d, x_{d+j}) : 1 \leq j \leq d - 1 \} \)

For \(d + 1 \leq i \leq 2d - 1 \), we define \(T_i = \{ (y_i, x_j) : 1 \leq j \leq d \} \).

Clearly \(T = \{ T_1, T_2, ..., T_{2d-1} \} \) is a graphoidal tree \(d \)-cover of \(G \) and so \(\gamma_T^{(d)}(G) \leq 2d - 1 = (2d - 1)(2d - 1 - 2(d - 1)) = q + p - pd \).

The following example illustrates the above theorem.

2.4.9. Example: Consider \(K_{9,9} \) and \(d = 5 \).
Lemma: $\gamma_t^{(d)}(K_{3r, 3r}) \leq 2r$ where $d \geq 2r$ and $r > 1$.

Proof: Let $V(K_{3r, 3r}) = X \cup Y$ where $X = \{x_1, x_2, \ldots, x_{3r}\}$ and $Y = \{y_1, y_2, \ldots, y_{3r}\}$.

Case (i) When r is even. For $1 \leq s \leq r$, we define

$$T_s = \{(x_i, y_i) : 0 \leq i \leq r-1\} \cup \{(x_i, y_{2r+s}) : 1 \leq i \leq r, i \neq s\} \cup \{(x_{r+s}, y_{2r+s}) : r+s \leq i \leq 3r, i \neq 2r+s\}$$

Then $\mathcal{J} = \{T_1, T_2, \ldots, T_{2r}\}$ is a graphoidal tree d–cover for $K_{3r, 3r}$, $\Delta(T_i) \leq 2r$ and $d \geq 2r$. So we have, $\gamma_t^{(d)}(K_{3r, 3r}) \leq 2r$.

Case (ii) When r is odd.

For $1 \leq s \leq r$, we define

$$T_s = \{(x_i, y_i) : 0 \leq i \leq 2r-1\} \cup \{(y_{r+s}, x_i) : r+1 \leq i \leq 3r, i \neq 2r+s\}$$

$$\cup \{(x_{2r+s}, y_i) : 2r+s \leq i \leq 3r\} \cup \{(x_{2r+s}, y_i) : 1 \leq i \leq s - 1, s \neq 1\}$$

Then $\mathcal{J} = \{T_1, T_2, \ldots, T_{2r}\}$ is a graphoidal tree d–cover for $K_{3r, 3r}$ and so $\gamma_t^{(d)}(K_{3r, 3r}) \leq 2r$, when r is odd.

The following example illustrates the above lemma for $r=2,3$.

Theorem 2.4.10: $\gamma_t^{(d)}(K_{3r, 3r}) = 81 + 18 - 90 = 9$
Consider $K_{6,6}$.

```
\begin{align*}
\text{Fig 20}
\end{align*}
```

Consider $K_{9,9}$.

```
\begin{align*}
\text{Fig. 21}
\end{align*}
```
2.4.11. Theorem

\[\gamma_r^{(d)}(K_{n,n}) = \left\lceil \frac{2n}{3} \right\rceil \] for \(d \geq \left\lceil \frac{2n}{3} \right\rceil \) and \(n \geq 3 \).

Proof: By 2.2.11, \(\left\lceil \frac{2n}{3} \right\rceil = \gamma_r(K_{n,n}) \) and \(\gamma_r(K_{n,n}) \leq \gamma_r^{(d)}(K_{n,n}) \), it follows that

\[\gamma_r^{(d)}(K_{n,n}) \geq \left\lceil \frac{2n}{3} \right\rceil \] for any \(n \). By 2.4.10, the result is true for \(n \equiv 0 \) (mod 3).

Let \(n \equiv 1 \) (mod 3) so that \(n=3r+1 \) for some \(r \). Let \(\mathcal{J}_1 = \{ T_1', T_2', \ldots, T_{2r}' \} \) be a minimum graphoidal tree \(d \)-cover for \(K_{3r,3r} \) as in 2.4.10. For \(1 \leq i \leq r \), we define

\[T_i = T_i' \cup \{(x_i, y_{3r+1})\}, \]

\[T_{r+i} = T_{r+i}' \cup \{(y_i, x_{3r+1})\} \] and

\[T_{2r+i} = \{(x_{3r+i}, y_{r+i}): 1 \leq i \leq 2r+1\} \cup \{(y_{3r+i}, x_{r+i}): 1 \leq i \leq 2r\}. \]

Clearly \(\mathcal{J}_2 = \{ T_1, T_2, \ldots, T_{2r+1} \} \) is a graphoidal tree \(d \)-cover for \(K_{3r+1,3r+1} \), as

\[\Delta(T_i) \leq 2r+1 = \left\lceil \frac{2n}{3} \right\rceil - d \] for each \(i \). Hence \(\gamma_r^{(d)}(K_{n,n}) = \gamma_r^{(d)}(K_{3r+1,3r+1}) \leq 2r+1 = \left\lceil \frac{2n}{3} \right\rceil \).

Let \(n \equiv 2 \) (mod 3) and \(n=3r+2 \) for some \(r \). Let \(\mathcal{J}_3 \) be a minimum graphoidal tree \(d \)-cover for \(K_{3r+1,3r+1} \) as in the previous case. Let \(\mathcal{J}_3 = \{ T_1, T_2, \ldots, T_{2r+1} \} \). For \(1 \leq i \leq r \), we define

\[T_i' = T_i \cup \{(x_i, y_{3r+2})\} \]
\[T_{r+i} = T_{r+i} \cup \{ (y_i, x_{3r+2}) \} \]
\[T_{2r+1} = T_{2r+1} \]
\[T_{2r+2} = \{ (x_{3r+2}, x_{r+i}) : 1 \leq i \leq 2r+2 \} \cup \{ (y_{3r+2}, x_{r+i}) : 1 \leq i \leq 2r+1 \}. \]

Clearly, \(S_4 = \{ T_1', T_2', \ldots, T_{2r+2}' \} \) is a graphoidal tree, d-cover for \(K_{3r+2, 3r+2} \), as
\[\Delta(T_i') \leq 2r+2 = \left\lceil \frac{2n}{3} \right\rceil \leq d \text{ for each } i. \]
Hence \(\gamma_T^{(d)}(K_{n,n}) = \gamma_T^{(d)}(K_{3r+2, 3r+2}) \leq 2r+2=\left\lceil \frac{2n}{3} \right\rceil. \) Therefore, \(\gamma_T^{(d)}(K_{n,n}) = \left\lceil \frac{2n}{3} \right\rceil \) for every \(n. \)

2.4.12. Remark: In 2.4.6, 2.4.8 and 2.4.11, \(\gamma_T^{(d)}(K_{n,n}) \) was found except for the case \(\frac{3d}{2} < n < 2d-1 \) (1)

However, we settle the problem upto \(n=12 \) (or) \(d=7 \) completely. From (1), it follows that \(d \geq 5. \)

Consider \(d = 5. \) By (1), we get \(n=8 \) only
\[\gamma_T^{(5)}(K_{8,8}) \geq \gamma_T(K_{8,8}) = \left\lceil \frac{16}{3} \right\rceil = 6 \]

Let \(V(K_{8,8}) = X \cup Y \) where \(X = \{ x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \} \) and \(Y = \{ y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8 \} \).
Here $\gamma_T^{(5)}(K_{8,8}) = \left\lceil \frac{16}{3} \right\rceil = 6$

Consider $d=6$. The only value of n satisfying (1) is 10.

$$\gamma_T^{(6)}(K_{10,10}) \geq \gamma_T(K_{10,10}) = \left\lceil \frac{20}{3} \right\rceil = 7$$
Hence $\gamma_T^{(6)}(K_{10,10}) = 7 = \left\lceil \frac{20}{3} \right\rceil$.

Consider $d=7$. The only possible values of n are 11 and 12.

For $n=11$, $\gamma_T^{(7)}(K_{11,11}) \geq \gamma_T(K_{11,11}) = \left\lceil \frac{22}{3} \right\rceil = 8$
Hence \(\gamma_T^{(7)}(K_{11,11}) = 8 = \left\lfloor \frac{22}{3} \right\rfloor \).

For \(n=12 \), \(\gamma_T^{(7)}(K_{12,12}) \geq \gamma_T(K_{12,12}) = \left\lfloor \frac{24}{3} \right\rfloor = 8. \)

Let \(V(K_{12,12}) = X \cup Y \) where \(X = \{x_1, x_2, \ldots, x_{12}\} \) and \(X = \{y_1, y_2, \ldots, y_{12}\} \)

Fig. 25

Hence \(\gamma_T^{(7)}(K_{12,12}) = 8 = \left\lfloor \frac{24}{3} \right\rfloor \)

Now we turn to the case of trees.
2.4.13. **Theorem** Let G be a tree and let $U = \{v \in V(G): \deg(v) - d > 0\}$. Then

$$
\gamma_T^{(d)}(G) = \sum_{v \in V(G)} \chi_U(v)(\deg(v) - d) + 1
$$

where $d \geq 2$ and $\chi_U(v)$ is the characteristic function of U.

Proof: Proof is by induction on the number of vertices m whose degrees are greater than d. If $m = 0$, then $\mathcal{I} = \{G\}$ is clearly a graphoidal tree d-cover. Hence the result is true in this case and $\gamma_T^{(d)}(G) = 1$. Let $m > 0$. Let $u \in V(G)$ with $\deg_G(u) = d + s$ ($s > 0$). Now decompose G into $s+1$ trees $G_1, G_2, ..., G_s, G_{s+1}$ such that $\deg_{G_i}(u) = 1$ for $1 \leq i \leq s$, $\deg_{G_{s+1}}(u) = d$. By induction hypothesis,

$$
\gamma_T^{(d)}(G_i) = \sum_{\deg_{G_i}(v) > d} (\deg_{G_i}(v) - d) + 1 = k_i, \quad 1 \leq i \leq s + 1.
$$

Now \mathcal{I}_i is the minimum graphoidal tree d-cover of G_i and $|\mathcal{I}_i| = k_i$ for $1 \leq i \leq s + 1$. Let $\mathcal{I} = \mathcal{I}_1 \cup \mathcal{I}_2 \cup ... \cup \mathcal{I}_{s+1}$.

Clearly \mathcal{I} is a graphoidal tree d-cover of G. By our choice of u, u is internal in only one tree T of \mathcal{I}. More over, $\deg_T(u) = d$ and $\deg_{G_i}(v) = \deg_G(v)$ for $v \neq u$ and $v \in V(G_i)$ for $1 \leq i \leq s + 1$.

Therefore, $\gamma_T^{(d)}(G) \leq |\mathcal{I}| = \sum_{i=1}^{s+1} k_i$.

$$
= \sum_{i=1}^{s+1} \left(\sum_{\deg_{G_i}(v) > d} (\deg_{G_i}(v) - d) + 1 \right)
$$

$$
= \sum_{i=1}^{s+1} \left(\sum_{\deg_{G_i}(v) > d} (\deg_{G_i}(v) - d) \right) + (s + 1)
$$

57
\[
\begin{align*}
= & \sum_{\deg_G(v) > d} (\deg_G(v) - d) + (s + 1) \\
= & \sum_{\deg_G(v) > d} (\deg_G(v) - d) + (\deg_G(u) - d) + 1 \\
= & \sum_{\deg_G(v) > d} (\deg_G(v) - d) + 1 \\
= & \sum_{v \in V(G)} \chi_U(v)(\deg_G(v) - d) + 1
\end{align*}
\]

For each \(v \in V(G)\) and \(\deg_G(v) > d\) there are at least \((\deg_G(v) - d) + 1\) subtrees of \(G\) in any graphoidal tree \(d\)-cover of \(G\) and so \(\gamma_T^{(d)}(G) \geq \sum_{\deg_G(v) > d} (\deg_G(v) - d) + 1\).

Hence \(\gamma_T^{(d)}(G) = \sum_{v \in V(G)} \chi_U(v)(\deg_G(v) - d) + 1\).

2.4.14. **Corollary**: Let \(G\) be a tree in which degree of every vertex is either greater than or equal to \(d\) or equal to one. Then \(\gamma_T^{(d)}(G) = m(d - 1) - p(d - 2) - 1\) where \(m\) is the number of vertices of degree 1 and \(d \geq 2\).

Proof: Since all the vertices of \(G\) other than pendant vertices have degree \(\geq d\) we have,

\[
\gamma_T^{(d)}(G) = \sum_{v \in V(G)} (\deg_G(v) - d)\chi_U(v) + 1 = \sum_{v \in V(G)} (\deg(v) - d) + md - m + 1
\]

\[
= 2q - dp + md - m + 1 = 2p - 2 - dp + md - m + 1 \quad \text{(as } q = p - 1) \\
= m(d - 1) - p(d - 2) - 1
\]

58
Recall that \(n_d = \min_{\mathcal{G}} n_3 \) and \(n = \min_{\mathcal{G}} n_3 \) where \(\mathcal{G} \) is the collection of all graphoidal tree \(d \)-covers of \(G \), \(\mathcal{G} \) is the collection of all graphoidal tree covers of \(G \) and \(n_3 \) is the number of vertices which are not internal vertices of any tree in \(\mathcal{G} \).

Clearly \(n_d = n \) if \(d \geq \Delta \). Now we prove this for any \(d \geq 2 \).

2.4.15. Lemma: For any graph \(G \), \(n_d = n \) (\(d \geq 2 \)).

Proof: Since every graphoidal tree \(d \)-cover is also a graphoidal tree cover for \(G \), we have \(n \leq n_d \). Let \(\mathcal{G} = \{ T_1, T_2, \ldots, T_m \} \) be any graphoidal tree cover of \(G \).

Let \(\Psi_i \) be a minimum graphoidal tree \(d \)-cover of \(T_i \) \((i = 1, 2, \ldots, m)\). Let \(\Psi = \bigcup_{i=1}^{m} \Psi_i \). Clearly \(\Psi \) is a graphoidal tree \(d \)-cover of \(G \). Let \(n_\Psi \) be the number of vertices which are not internal in any tree of \(\Psi \). Clearly \(n_\Psi = n_3 \).

Therefore, \(n_d \leq n_\Psi = n_3 \) for \(\mathcal{G} \in \mathcal{G} \), where \(\mathcal{G} \) is the collection of graphoidal tree covers of \(G \) and so \(n_d \leq n \). Hence \(n = n_d \).

We have the following result for graphoidal path cover. This theorem is proved by S. Arumugam and J. Suresh Suseela in [8]. We prove this, by deriving a minimum graphoidal path cover from a graphoidal tree cover of \(G \).

2.4.16. Theorem: \(\gamma_T^{(2)}(G) = q - p + n_2 \)

Proof: From 2.4.2 it follows that \(\gamma_T^{(2)}(G) \geq q - p + n_2 \). Let \(\mathcal{G} \) be any graphoidal tree cover of \(G \) and \(\mathcal{G} = \{ T_1, T_2, \ldots, T_k \} \). Let \(\Psi_i \) be a minimum
graphoidal tree d-cover of T_i ($i=1,2, \ldots, k$). Let m_i be the number of vertices of degree 1 in T_i ($i=1,2,\ldots, k$). Then by 2.4.14 it follows that $\gamma_{T_i}^{(2)}(T_i) = m_i - 1$ for all $i=1, 2,\ldots, k$. Consider the graphoidal tree 2-cover $\Psi = \bigcup_{i=1}^{k} \Psi_i$ of G.

Now $|\Psi_3| = \sum_{i=1}^{k} |\Psi_i| = \sum_{i=1}^{k} (m_i - 1)$

$= \sum_{i=1}^{k} m_i + \sum_{i=1}^{k} q_i - \sum_{i=1}^{k} p_i$

$= q - \sum_{i=1}^{k} p_i + \sum_{i=1}^{k} m_i$

Consider $\sum_{i=1}^{k} p_i = \sum_{i=1}^{k} (\text{Number of internal vertices of } T_i + \text{Number of pendant vertices of } T_i)$

$= p - n_3 + \sum_{i=1}^{k} m_i$

Therefore, $|\Psi_3| = q - p + n_3$.

Choose a graphoidal tree cover \mathcal{S} of G such that $n_3 = n$. Then for the corresponding Ψ_3 we have $|\Psi_3| = q - p + n = q - p + n_2$, as $n_2 = n$ by 2.4.15.

2.4.17. Corollary: If every vertex is an internal vertex of a graphoidal tree cover, then $\gamma_{T}^{(2)}(G) = q - p$.

Proof: Clearly $n = 0$ by definition. By 2.4.15, $n_2 = n$. So we have $n_2 = 0$. □
J. Suresh Suseela and S. Arumugam proved the following result in [8]. However, we prove the result using graphoidal tree cover.

2.4.18. Theorem: Let G be a unicyclic graph with r vertices of degree 1. Let C be the unique cycle of G and let m denote the number of vertices of degree greater than 2 on C. Then

$$
\gamma^{(2)}_T(G) = \begin{cases}
2 & \text{if } m = 0 \\
 r+1 & \text{if } m = 1 \text{ and } \deg(v) \geq 3 \text{ where } v \text{ is the unique vertex of degree } > 2 \text{ on } C \\
r & \text{otherwise}
\end{cases}
$$

Proof: By 2.4.15 and 2.4.16, we have $\gamma^{(2)}_T(G) = q - p + n$. We have $q(G) = p(G)$ for unicyclic graph. So we have $\gamma^{(2)}_T(G) = n$. If $m = 0$, then clearly $\gamma^{(2)}_T(G) = 2$.

Let $m = 1$. Let v be the unique vertex of degree > 2 on C. Let $e = vw$ be an edge on C. Clearly $\mathcal{S} = \{G - e, e\}$ is a minimum graphoidal tree cover for G and so $n = r + 1$. Since there is a vertex of C which is not internal in a tree of a graphoidal tree cover, we have $n = r + 1$. When $m = 1$, $\gamma^{(2)}_T(G) = r + 1$. Let $m \geq 2$. Let v and w be vertices of degree greater than 2 on C such that all vertices in a (v, w) – section of C other than v and w have degree 2. Let P denote this (v, w)–section. If P has length 1 then $P = (v, w)$. Clearly $\mathcal{S} = \{G - P, P\}$ is a graphoidal tree cover of G. Also $n = r$ and so $\gamma^{(2)}_T(G) = r$ when $m \geq 2$.

Hence the theorem.

2.4.19. Theorem: Let G be a graph such that $\gamma_T(G) \leq \delta(G) - d + 1(\delta > d \geq 2)$.

Then $\gamma^{(d)}_T(G) = q - p(d - 1)$.
Proof: By 2.4.3, $\gamma_T^{(d)}(G) \geq q - p(d - 1)$. Let \mathfrak{T} be a minimum graphoidal tree cover of G. Since $\delta > \gamma_T$, every vertex is an internal vertex of a tree in a graphoidal tree cover \mathfrak{T}. Moreover, since $\delta \geq d + \gamma_T - 1$ the degree of each internal vertex of a tree in \mathfrak{T} is $\geq d$. Let Ψ_i be a minimum graphoidal tree d–cover of T_i ($i = 1, 2, \ldots, k$). Let m_i be the number of vertices of degree 1 in T_i ($i=1,2,\ldots, k$).

Then by 2.4.14, for $i = 1, 2, \ldots, k$ we have

$$\gamma_T^{(2)}(T_i) = -p_i(d - 2) + m_i(d - 1) - 1$$

Consider the graphoidal tree d–cover $\Psi_T = \bigcup_{i=1}^{k} \Psi_i$ of G.

$$|\Psi_T| = \sum_{i=1}^{k} |\Psi_i| = \sum_{i=1}^{k} \left(m_i(d - 1) - p_i(d - 2) - 1 \right)$$

$$= \sum_{i=1}^{k} \left[(m_i - p_i)(d - 1) + q_i \right]$$

$$= (d - 1) \sum_{i=1}^{k} (m_i - p_i) + \sum_{i=1}^{k} q_i$$

Now, $\sum_{i=1}^{k} p_i = \sum_{i=1}^{k} (\text{Number of internal vertices of } T_i + \text{Number of pendant vertices of } T_i)$

$$= p + \sum_{i=1}^{k} m_i$$
Therefore, \(|\Psi_T| = -(d-1)p+q\). In other words, \(\gamma_T^{(d)}(G) \leq q-p(d-1)\). Hence \(\gamma_T^{(d)}(G) = q-p(d-1)\).

2.4.20. Corollary Let \(G\) be a graph such that \(\delta = \left\lfloor \frac{p}{2} \right\rfloor + k\) where \(k \geq 1\). Then
\[\gamma_T^{(d)}(G) = q-p(d-1)\] for \(d \leq k+1\).

Proof: \(\delta - d + 1 = \left\lfloor \frac{p}{2} \right\rfloor + k - d + 1 \geq \left\lfloor \frac{p}{2} \right\rfloor \geq \gamma_T(G)\) (by Corollary 2.2.26) By 2.4.19, \(\gamma_T^{(d)}(G) = q-p(d-1)\).

2.4.21. Corollary Let \(G\) be an \(r\)-regular graph where \(r > \left\lfloor \frac{p}{2} \right\rfloor\). Then \(\gamma_T^{(d)}(G) = q-p(d-1)\) for \(d \leq r+1 - \left\lfloor \frac{p}{2} \right\rfloor\).

Proof: Here \(\delta = r\) and so the result follows from 2.4.20

2.4.22. Corollary \(\gamma_T^{(d)}(K_{m,n}) = q-p(d-1)\) where \(2 \leq d \leq \frac{2m-n}{3}\) and \(6 \leq m \leq n \leq 2m-6\).

Proof: Consider \(\delta - d + 1 \geq m - \frac{2m-n}{3} + 1\)

\[
\begin{align*}
= & \frac{3m-2m+n}{3} + 1 \\
= & \frac{m+n}{3} + 1 \geq \left\lfloor \frac{m+n}{3} \right\rfloor = \gamma_T(K_{m,n})
\end{align*}
\]

Hence by 2.4.19, \(\gamma_T^{(d)}(K_{m,n}) = q-p(d-1)\).
Our first result on the graphoidal tree d-covering number of graph products is for grid graphs.

2.4.23. **Theorem:** For $m, n \geq 3$, $\gamma_T^{(d)}(P_m \times P_n) = 2$ ($d \geq 3$) and $\gamma_T^{(2)}(P_m \times P_n) = q - p$.

Proof: Clearly $\gamma_T^{(d)}(P_m \times P_n) \geq 2$ and by 2.2.13 and 2.2.14, we have $\gamma_T^{(d)}(P_m \times P_n) \leq 2$ for $d \geq 3$. Hence $\gamma_T^{(d)}(P_m \times P_n) = 2$ for $d \geq 3$. By 2.2.14, every vertex is an internal vertex of a tree in a minimum graphoidal tree cover. By 2.4.17, $\gamma_T^{(2)}(P_m \times P_n) = q - p$. ■

2.4.24. **Theorem**

For $m \geq 3, n \geq 2$, $\gamma_T^{(d)}(P_n \times C_m) = 2, d \geq 3$ and $\gamma_T^{(2)}(P_n \times C_m) = q - p$.

Proof: Clearly $\gamma_T^{(d)}(P_n \times C_m) \geq 2$ and by 2.2.15 and 2.2.16 we have $\gamma_T^{(d)}(P_n \times C_m) \leq 2$ for $d \geq 3$. Hence $\gamma_T^{(d)}(P_n \times C_m) = 2$ for $d \geq 3$. Since $\delta(P_n \times C_m) = 3$ and $\gamma_T(P_n \times C_m) = 2$, we have $\gamma_T(P_n \times C_m) = \delta - d + 1$ (when $d = 2$).

By 2.4.19, $\gamma_T^{(2)}(P_n \times C_m) = q - p$. ■

2.4.25. **Theorem** $\gamma_T^{(d)}(C_m \times C_n) = 3, d \geq 4$ and $\gamma_T^{(2)}(C_m \times C_n) = q - p$.

Proof: For $d \geq \Delta = 4$, $\gamma_T^{(d)}(C_m \times C_n) = \gamma_T(C_m \times C_n) = 3$, by 2.2.17. Since $\delta(C_m \times C_n) = 4$ and $\gamma_T(C_m \times C_n) = 3$, we have $\gamma_T(C_m \times C_n) = \delta - d + 1$ (when $d = 2$).

By 2.4.19, $\gamma_T^{(2)}(C_m \times C_n) = q - p$. ■