Chapter 2

CONTINUOUS MONOTONIC DECOMPOSITION OF GRAPHS

In this chapter, we introduce the concept of continuous monotonic decomposition of graphs and investigate their variations. The contents of this chapter have been published in [12].

Definition 2.1 Let $G = (V, E)$ be a connected simple graph of order p and size q. If G_1, G_2, \ldots, G_n are edge disjoint subgraphs of G such that $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup E(G_n)$, then (G_1, G_2, \ldots, G_n) is said to be a decomposition of G.

Different types of decomposition of G have been studied in the literature [3, 5, 6, 8, 11, 13, 15, 17, 18] by imposing suitable conditions on the subgraphs G_i. Isomorphic decompositions are found in [2, 7, 16, 20] and non-isomorphic decompositions are dealt in [1, 10, 12, 19].

Definition 2.2 A decomposition with isomorphic subgraphs is called an isomorphic decomposition. For the graph G given in fig 2.1, (G_1, G_2, G_3) is an isomorphic decomposition of G.
Definition 2.3 A decomposition with non-isomorphic subgraphs is called an *non-isomorphic decomposition*. For the graph G given in fig 2.2, \((G_1, G_2, G_3)\) is a non-isomorphic decomposition of G.
In [1], Alavi et al. introduced *Ascending Subgraph Decomposition* (ASD) of a graph.

Definition 2.4 A decomposition of G into subgraphs G_i (not necessarily connected) such that $|E(G_i)| = i$ and G_i is isomorphic to a proper subgraph of G_{i+1}, is called an *Ascending Subgraph Decomposition*.

Example 2.5 For the graph G in Fig 2.3, the decomposition (G_1, G_2, G_3, G_4) of G are such that $|E(G_i)| = i$ for all $i = 1, 2, 3, 4$ and G_i is isomorphic to a proper subgraph of G_{i+1}. Therefore the decomposition (G_1, G_2, G_3, G_4) is an ascending subgraph decomposition of G.

Fig 2.2
We define continuous monotonic decomposition as follows.

Definition 2.6 A decomposition \((G_1, G_2, \ldots, G_n) \) of \(G \) is said to be a **continuous monotonic decomposition (CMD)** if each \(G_i \) is connected and \(|E(G_i)| = i \) for each \(i = 1, 2, \ldots, n \).

Example 2.7 For the graph \(G \) in fig 2.4, \((G_1, G_2, G_3, G_4)\) is a CMD.
This concept is entirely different from the ascending subgraph decomposition. The decomposition in fig 2.4 is a CMD but not ASD, since G_3 is not isomorphic to a proper subgraph of G_4. The decomposition in fig 2.3 is an ASD but not a CMD, since H_4 is not a connected subgraph.

Definition 2.8 A CMD in which each G_i is a star is said to be a *continuous monotonic star decomposition (CMSD)*.

Example 2.9 For the graph G in fig 2.5, (S_1, S_2, S_3, S_4) is a CMSD of the graph G.

Fig 2.5
Definition 2.10 A CMD in which each G_i is a path is said to be a *continuous monotonic path decomposition* (CMPD).

Example 2.11 For the graph G in fig 2.6, (P_1, P_2, P_3, P_4) is a CMSD of G.

![Graph G with paths P_1, P_2, P_3, P_4]

Remark 2.12 It is clear that every CMSD / CMPD is an ASD, but not conversely.

Theorem 2.13 gives a necessary and sufficient condition for a graph to have a CMD.
Theorem 2.13 Let G be a connected simple graph of order p and size q. Then G admits a CMD (H_1, H_2, \ldots, H_n) if and only if $q = \binom{n+1}{2}$.

Proof Let G be a connected graph with $q = \binom{n+1}{2}$. Let u, v be two vertices of G such that $d(u, v)$ is maximum. Let $N_r(u) = \{v \in V/ d(u, v) = r \}$. If $d(u) \geq n$, choose n edges incident with u. Let H_n be a subgraph induced by these n edges. If $d(u) < n$, then choose n edges incident with u, vertices of $N_1(u), N_2(u), \ldots$, successively such that the subgraph H_n induced by these edges is connected. In both cases, $G - H_n$ has a connected component G^1 with $(n-1)n/2$ edges. Now, consider G^1 and proceed as above to get H_{n-1} such that $G^1 - H_{n-1}$ has a connected component G^2 of size $(n-1)(n-2)/2$ edges. Proceeding like this, we get a connected subgraph H_2 such that G^{n-1} is a graph with one edge which is taken as H_1. Thus (H_1, H_2, \ldots, H_n) is a CMD of G. The converse is obvious.

Now we proceed to investigate some special class of graphs which admit a CMSD.

Remark 2.14 It is easy to see that K_n admits CMSD.
Theorem 2.15 K^+_n admits a CMSD for all $n \geq 1$.

Proof Let $\{v_1, v_2, \ldots, v_n\}$ be the vertex set of K_n with pendant edges $v_i v'_i$ for all $i = 1, 2, \ldots, n$. Let S_n be the star $K_{1,n}$ centered at v_n in K^+_n. Clearly $K^+_n - E(S_n) \supseteq K^+_n - 1$.

Let S_{n-1} be the star $K_{1,n-1}$ centered at v_{n-1} in $K^+_n - 1$ and so on.

Finally, S_1 be the star $K_{1,1}$ centered at v_1 in K^+_1. Then S_1, S_2, \ldots, S_n is a CMSD of K^+_n.

Theorem 2.16 (i) K_{n+2n+1} admits CMSD for all $n \geq 1$.

(ii) $K_{n+1,2n+1}$ admits CMSD for all $n \geq 1$.

Proof Let $V = \{v_1, v_2, \ldots, v_n\}$ and $U = \{u_1, u_2, \ldots, u_{2n+1}\}$ be the bipartition of $K_{n,2n+1}$. Let T_i denote the star $K_{1,2n+1}$ centered at v_i. Then T_1 can be decomposed into stars S_1 and S_{2n}; T_2 can be decomposed into two stars S_2 and S_{2n-1}. Continuing this process, T_n can be decomposed into stars S_n and S_{n+1}. Thus $K_{n,2n+1}$ is decomposed into $2n$ stars of sizes $1, 2, \ldots, 2n$.

Similarly $K_{n+1,2n+1}$ is decomposed into $2n+1$ stars of sizes $1, 2, \ldots, 2n+1$.

Example 2.17 The decomposition of $K_{3,7}$ into continuous monotonic stars is illustrated in fig 2.7
We use the following suitcase lemma to prove theorem 2.19.

Lemma 2.18 [18, 19]

Let G be an edge disjoint union of stars $S_{i+1}, S_{i+2}, ..., S_{i+k}$ for some $k > 0$ such that $q = i (i + 1) / 2$. Then G can be decomposed into stars $S_1, S_2, ..., S_i$.

Theorem 2.19 $K_{m,r}$ ($m \leq r$) can be decomposed into stars $S_1, S_2, ..., S_{2n}$ (CMSD) if and only if $m = n - i$ and $r = 2n + 1 + j$ where $i, j > 0$ such that $n = i (j + 1)/(j - 2i)$.
Proof Let S_1, S_2, \ldots, S_{2n} be a CMSD of $K_{m',r}$. Then $q = n (2n + 1)$

= $m \cdot r$ and $m < r$. Since $S_{2n} \subseteq K_{m',r}$ and $m < r$, $r > 2n + 1$. Hence

$m = n - i$ and $r = 2n + 1 + j$ where $i, j > 0$. Then $(n - i) (2n + 1 + j) =

m \cdot r = n (2n + 1)$ and hence $n = i (j + 1)/(j - 2i)$.

Conversely, let $n = i (j + 1)/(j - 2i)$ where $i, j > 0$ and let

$m = n - i$ and $r = 2n + 1 + j$. We have to prove that $K_{m',r}$ can be decomposed into stars S_1, S_2, \ldots, S_{2n}.

Now, $q(K_{m',r}) = m \cdot r$

= $(n - i)(2n + 1 + j)$

= $n (2n + 1) + n j - 2ni - i - ij$

= $n (2n + 1) + n (j - 2i) - i - ij$

= $n (2n + 1) + i (j + 1)(j - 2i)/(j - 2i) - i - ij$

= $n (2n + 1)$

We construct a CMSD as follows:

Let $U = \{u_1, u_2, \ldots, u_{n-i}\}$ and $V = \{v_1, v_2, \ldots, v_{2n+1+j}\}$ be the bipartition of $K_{m',r}$. Let T_s denote the star $K_{1,2n+1+j}$ centered at u_s for $s = 1, 2, \ldots, (n - i)$.

Clearly,

T_1 can be decomposed into two stars S_{2n} and S_{j+1};
T₂ can be decomposed into two stars S₂n - 1 and S_j + 2;

Tₙ - i can be decomposed into two stars S₂n - (n - i - 1) and Sₖ₊ₙ - i.

That is, Tₙ - i can be decomposed into two stars Sₙ₊ᵢ₊₁ and Sₖ₊ₙ - i.

Obviously, our decomposition requires S₂ₙ, S₂ₙ₋₁, ..., Sₙ₊ᵢ₊₁. The remaining stars S₁, S₂, ..., Sₙ₊ᵢ must be from the stars Sₖ₊₁, Sₖ₊₂, ..., Sₖ₊ₙ - i.

Since \(n = \frac{j + 1}{j - 2i} \) is a positive integer, \(n + i < j + n - i \).

Now, \(q(S₁US₂U...Sₙ₊ᵢ) = 1 + 2 + ... + (n + i) \)

\[= \frac{(n + i)(n + i + 1)}{2} \]

\[= \frac{n^2 + 2ni + i^2 + i}{2} \]

Also,

\[q(Sₖ₊₁U Sₖ₊₂U ... U Sₖ₊ₙ - i) = q(Kₘ,r) - q(S₂ₙUS₂ₙ₋₁U...US₂ₙU (n - i - 1)) \]

\[= n(2n + 1) - \{2n(n - i) - [1 + 2 + ... + (n - i - 1)]\} \]

\[= n(2n + 1) - \{2n(n - i) - (n - i - 1)(n - i)/2\} \]

\[= \frac{n^2 + n + 2ni + i^2 + i}{2} \]

By lemma 2.18, Sₖ₊₁, Sₖ₊₂, ..., Sₖ₊ₙ - i can be decomposed into stars S₁, S₂, ..., Sₙ₊ᵢ. Thus Kₘ,r can be decomposed into stars S₁, S₂, ..., S₂ₙ which is the required CMSD. \[\]

18
Theorem 2.20 \(W_p \) admits CMSD if and only if \(p = 4, 6 \).

Proof \(W_p = C_{p-1} + K_1 \). Any CMSD of \(W_p \) contains at most 5 edges in \(C_{p-1} \) and hence \(p - 1 \leq 5 \) so that \(p \leq 6 \). Since \(q(W_5) = 8 \), \(p \neq 5 \). Hence \(p = 4, 6 \).

Conversely, let \(p = 4, 6 \). If \(p = 4 \), then \(W_p = K_4 \) which admits CMSD. If \(p = 6 \), then \(W_6 = C_5 + K_1 \). Let \(V(C_5) = \{u_1, u_2, u_3, u_4, u_5\} \) and \(V(K_1) = \{u_6\} \). Then \(S_1 = \langle u_1 u_2 \rangle \),
\[
S_2 = \langle u_2 u_3, u_3 u_4 \rangle ,
\]
\[
S_3 = \langle u_4 u_5, u_5 u_1, u_5 u_6 \rangle ,
\]
\[
S_4 = \langle u_1 u_6, u_2 u_6, u_3 u_6, u_4 u_6 \rangle \text{ is a CMSD of } W_6. \]

Example 2.21 A decomposition of \(W_6 \) into continuous monotonic stars is illustrated in fig 2.8.

![Diagram of W_6](image-url)
Notation: For a spider tree T with the unique vertex u of degree ≥ 3, let W denote the set of pendant vertices of T and let x denote the number of vertices which are at a distance greater than one from u.

Theorem 2.22 A spider tree T admits CMSD if and only if $T - W = P_t$ where $t \leq 3$.

Proof Let S_1, S_2, \ldots, S_n be the CMSD of T.

We claim that $T - W$ is a path.
Suppose $T - W$ is not a path. Then there exists at least three pendant vertices x_1, x_2 and x_3 such that $d(u, x_i) > 2$, for all $i = 1, 2, 3$ (see fig 2.9). Clearly no internal vertex of $u - x_i$ path can be a center of star of size ≥ 3. Hence none of the pendant edges incident with x_i can be fitted in any star of size ≥ 3, which is a contradiction to the hypothesis. Hence $T - W$ is a path, say P_t.

![Fig 2.9](image)

We claim that $t \leq 3$.

We consider two cases.

Case (i) u is the origin of P_t.

Since T is a spider tree, all the internal vertices and terminus of P_t are of degree 2 in T. Let x be the unique pendant vertex adjacent to the terminus of P_t and u_1 be the vertex adjacent to u in P_t (see fig 2.10).
Then no vertex (except origin) of P_i can be a center of a star of size ≥ 3. Hence $u_1 - x$ path of T must be decomposed into non-isomorphic stars of sizes one and two so that $d (u , x) \leq 4$. Thus $t \leq 3.$

Case (ii) u is not the origin of P_i.

There exists exactly two pendant vertices x_1 and x_2 which are not adjacent to u in T. Let u_1 be a vertex adjacent to u in the $x_1 - u$ section of P_i and u_2 be a vertex adjacent to u in the $x_2 - u$ section of P_i (see fig 2.8). Since $u_1 - x_1$ and $u_2 - x_2$ sections must be decomposed into S_1 and S_2, we must have $d (u , x_1) \leq 3$ and $d (u , x_2) \leq 2$. Hence $t \leq 3.$
Conversely, let $T - W$ be a path of length ≤ 3. We consider three cases.

Case (i) Let $T - W = P_3$.

Let u_1 be the vertex adjacent to u in P_3. If u is the origin of P_3, then the $u_1 - x$ path can be decomposed into S_1 and S_2 and remaining part of tree is a star which can be decomposed into S_3, S_4, \ldots, S_n (see fig 2.12).

![Fig 2.12](image)

If u is not the origin of P_3, let u_1 and u_2 be the vertices adjacent to u in P_3 and $d(u_1, x_1) = 2$ and $d(u_2, x_2) = 1$. Then $S_1 = u_2x_2$ and $S_2 = u_1 - x_1$ path in T and the remaining part of T is a star (see fig 2.13).

![Fig 2.13](image)
Case (ii) \(T - W = P_2 \).

If \(u \) is the origin of \(P_2 \), let \(u_1 \) be adjacent to \(u \) in \(P_2 \). Then the \(u - x \) path in \(T \) is decomposed into \(S_1 \) and \(S_2 \) and the remaining part is a star (see fig 2.14).

![Fig 2.14](image)

If \(u \) is not the origin of \(P_2 \), let \(u_1 \) and \(u_2 \) be two vertices adjacent to \(u \) in \(P_2 \) and let \(x_1 \) and \(x_2 \) be the unique vertices adjacent to \(u_1 \) and \(u_2 \) respectively. Then \(S_1 = u_1 x_1 \) and \(S_2 = u - x_2 \) path in \(T \) and the remaining part is a star (see fig 2.15).

![Fig 2.15](image)

Case (iii) \(T - W = P_1 \).
Let \(u_1 \) be the vertex adjacent to \(u \) in \(P_1 \) and \(x_1 \) be the unique vertex adjacent to \(u_1 \). Then \(S_1 = u_1 x_1 \) and the remaining part is a star (see fig 2.16).

![Diagram of a spider tree](image)

Fig 2.16

Hence the theorem. \(\square \)

Now we consider spider trees which admit CMPD.

Theorem 2.23 If a spider tree \(T \) admits a CMPD, then \(\Delta \leq 2x + 3 \).

Proof Let \(v_1, v_2, \ldots, v_x \) be the pendant vertices not adjacent to \(u \) in \(T \). Let \(P_1, P_2, \ldots, P_n \) be the CMPD of \(T \). Suppose \(\Delta \geq 2x + 4 \). Then there exists pendant vertices \(u_1, u_2, \ldots, u_x, u_{x+1}, u_{x+2}, u_{x+3}, u_{x+4} \) which are adjacent to \(u \). Let \(Q_i \) denote the \(v_i - u \) path in \(T \). Since each \(Q_i \) can at most be extended to one \(u_i \) to provide some \(P_i \) and three of the \(uu_i \)'s can be taken for \(P_1 \) and \(P_2 \), there exists an edge \(uu_i \) which
can not be fitted in any one of the P_i's, which is a contradiction.

Hence $\Delta \leq 2x + 3$.

Remark 2.24 For the spider tree T in fig 2.17, $x = 4$ and $\Delta = 2x + 3 = 11$ and it has a CMPD.

![Fig 2.17](image)

Remark 2.25 The converse of the above theorem need not be true.

For the spider tree T in fig 2.18, $x = 4$ and $\Delta = 2x + 3 = 11$ with $q = 15$. But it does not admit CMPD, since P_5 does not exist in T.

![Fig 2.18](image)
Theorem 2.26 If a spider tree T with $\text{diam}(T) = n$ admits CMPD, then $\Delta \leq 2n - 1$.

Proof Since $\text{diam}(T) = n$ and T admits CMPD, vertex u is the centre of T. Let P_1, P_2, \ldots, P_n be the CMPD of T. Since P_1 can contribute at most one degree to u and each of the remaining P_i's can contribute at most two degrees to u, $\Delta \leq 2n - 1$.

Remark 2.27 If a spider tree T admits CMPD, then $\text{diam}(T) \geq n$. But the converse need not be true. For the spider tree T in fig 2.19, $\text{diam}(T) = 7$ and $q = 28$. But it does not admit CMPD, since P_6 and P_7 do not exist simultaneously.

Fig 2.19

Theorem 2.28 Let T be a spider tree with $\text{diam}(T) = n$ (even). If $d(u, z) = n/2$ for all z in W, then T admits a CMPD.
Proof Let u be the origin of $(n + 1)$ paths of length $n/2$. Let $Q_1, Q_2, \ldots, Q_{n+1}$ be the paths of length $n/2$. Clearly $Q_i \cup Q_j = P_n$ for all $i \neq j$ and $i, j = 1, 2, \ldots, n$. Hence each pair can be decomposed into P_i and P_{n-i} for all $i = 0, 1, \ldots, (n - 2)/2$ and Q_{n+1} is taken for $P_{n/2}$, which is the required CMPD.

Theorem 2.29 Let T be a spider tree with $\text{diam}(T) = n$ (odd). If $d(u, z) = (n + 1)/2$ for exactly one vertex z in W and $d(u, z) = (n - 1)/2$ for all other vertices in W, then T admits a CMPD.

Proof Let $Q_1, Q_2, \ldots, Q_{n+1}$ be the paths of length $(n - 1)/2$ and Q_{n+2} be a path of length $(n + 1)/2$. Clearly $Q_i \cup Q_j = P_n$ for all $i \neq j$ and $i, j = 1, 2, \ldots, n$. Hence each pair can be decomposed into P_i and P_{n-i} for all $i = 0, 1, \ldots, (n - 3)/2$ and Q_{n+1}, Q_{n+2} are taken for $P_{(n-1)/2}$ and $P_{(n+1)/2}$ respectively, which is the required CMPD.

Remark 2.30 Converse of theorem 2.28 need not be true. For the spider tree in fig 2.20, $\text{diam}(T) = 6$ and $P_6, P_5, P_4, \ldots, P_1$ exist but $d(u, z) \neq n/2$.

28
Remark 2.31 Every olive tree admits a CMPD.

Theorem 2.32 Any olive tree T with k branches admits CMSD if and only if $k \leq 3$.

Proof Suppose an olive tree T with k branches admits CMSD. Since every olive tree is a spider, by theorem 2.22, $T - W = P_t$ where $t \leq 3$. This is possible only when $k \leq 3$. Converse is obvious. $lacksquare$

Conclusion and open problem.

In this chapter, we introduced the concept of continuous monotonic decomposition in graphs. We obtained a necessary and sufficient condition for a graph to have a CMD. We characterized
complete bipartite graphs, spiders, wheels and olive trees which admit CMSD. Then we considered spider trees which admit CMPD. Some necessary conditions and some sufficient conditions were obtained. But no necessary and sufficient condition was obtained. Thus we have the following open problem.

1. Find a necessary and sufficient condition for a spider tree to have a CMPD.

* * * * *