CONTENTS

1. **INTRODUCTION**
 1.1 Origin and distribution
 1.2 Narrow genetic diversity
 1.3 Broadening the genetic base for biotic and abiotic stresses
 1.4 Germplasm resources
 1.4.1 1981 IRRDB collection
 1.4.2 Characterisation, evaluation and utilisation of wild germplasm
 1.5 Genetic studies
 1.5.1 Coefficients of variation
 1.5.2 Heritability and genetic advance
 1.5.3 Correlation
 1.5.4 Genetic divergence
 1.6 Objectives of the study

2. **MATERIALS AND METHODS**
 2.1 Location
 2.2 Experimental materials
 2.3 Experimental methods
 2.3.1 Descriptors for juvenile characterisation
 2.3.2 Morphological characters
 2.3.3 Stomatal characters
 2.3.4 Leaf anatomical investigations
 2.3.5 Bark anatomical investigations
 2.3.6 Photography
 2.4 Statistical methods
 2.4.1 Genetic variability
 2.4.1.1 Analysis of variance
 2.4.2 Genetic parameters
 2.4.2.1 Phenotypic and genotypic variance
 2.4.2.2 Coefficients of variation
 2.4.2.3 Heritability in the broad sense
 2.4.2.4 Genetic advance
 2.4.3 Correlation
 2.4.4 Factor analysis
 2.4.5 Genetic divergence
 2.4.6 Performance index
3. RESULTS

3.1 Juvenile characterisation 31

3.2 Genetic variability 50

3.2.1 Analysis of variance 50

3.2.2 General performance of the wild genotypes 53

3.2.2.1 Morphological characters 53

3.2.2.2 Test tap yield over three years 65

3.2.2.3 Leaf structural characters 68

3.2.2.4 Bark structural characters 78

3.2.3 Provenance-wise comparison of performance 89

3.2.3.1 Morphological characters 89

3.2.3.2 Test tap yield over three years 89

3.2.3.3 Leaf structural characters 93

3.2.3.4 Bark structural characters 95

3.3 Genetic parameters 97

3.3.1 Phenotypic and genotypic coefficients of variation 98

3.3.1.1 Morphological characters 98

3.3.1.2 Test tap yield over three years 99

3.3.1.3 Leaf structural characters 100

3.3.1.4 Bark structural characters 101

3.3.2 Heritability (broad sense) 102

3.3.2.1 Morphological characters 102

3.3.2.2 Test tap yield over three years 103

3.3.2.3 Leaf structural characters 103

3.3.2.4 Bark structural characters 103

3.3.3 Genetic advance 104

3.3.3.1 Morphological characters 104

3.3.3.2 Test tap yield over three years 104

3.3.3.3 Leaf structural characters 104

3.3.3.4 Bark structural characters 105

3.4 Character associations 105

3.4.1 Morphological characters 105

3.4.2 Leaf structural characters 107

3.4.3 Bark structural characters 111

3.5 Factor analysis 119

3.6 Genetic divergence- D² analysis 121

3.7 Performance index 123

(vii)
4 Discussion

4.1 Juvenile characterisation

4.2 Genetic variability
 4.2.1 Analysis of variance
 4.2.2 Performance of the wild genotypes
 4.2.2.1 Morphological characters
 4.2.2.2 Test tap yield over three years
 4.2.2.3 Leaf structural characters
 4.2.2.4 Bark structural characters
 4.2.3 Provenance-wise performance of the wild genotypes
 4.2.3.1 Morphological characters
 4.2.3.2 Test tap yield over three years
 4.2.3.3 Leaf structural characters
 4.2.3.4 Bark structural characters

4.3 Genetic parameters
 4.3.1 Phenotypic and genotypic coefficients of variation
 4.3.1.1 Morphological characters
 4.3.1.2 Test tap yield over three years
 4.3.1.3 Leaf structural characters
 4.3.1.4 Bark structural characters
 4.3.2 Heritability (broad sense)
 4.3.2.1 Morphological characters
 4.3.2.2 Test tap yield over three years
 4.3.2.3 Leaf structural characters
 4.3.2.4 Bark structural characters
 4.3.3 Genetic advance
 4.3.3.1 Morphological characters
 4.3.3.2 Test tap yield over three years
 4.3.3.3 Leaf structural characters
 4.3.3.4 Bark structural characters

4.4 Character associations
 4.4.1 Morphological characters
 4.4.2 Leaf structural characters
 4.4.3 Bark structural characters

4.5 Factor analysis

4.6 Genetic divergence - D² analysis

4.7 Performance index

5 SUMMARY

REFERENCES
<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>List of genotypes selected for the study</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Descriptors and frequency of distribution of the wild genotypes</td>
<td>37 - 39</td>
</tr>
<tr>
<td>3</td>
<td>Description of the wild genotypes along with control as per the descriptor.</td>
<td>40 - 49</td>
</tr>
<tr>
<td>4</td>
<td>ANOVA for the growth characters during the first year</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>ANOVA for test tap yield for the first three years</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>ANOVA for leaf structural characters in the third year</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>ANOVA for bark structural characters in the third year</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Range and general mean of growth characters in comparison with control.</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>Mean genotypic performance for the growth characters during first year</td>
<td>59 - 64</td>
</tr>
<tr>
<td>10</td>
<td>Range and general mean of test tap yield of wild genotypes and control.</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>Mean test tap yield of the wild genotypes and the control</td>
<td>66 - 67</td>
</tr>
<tr>
<td>12</td>
<td>Range and general mean of leaf structural characters in the third year</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>Mean values for the leaf structural characters in the third year</td>
<td>72 - 77</td>
</tr>
<tr>
<td>14</td>
<td>Range and general mean of bark structural characters in the third year</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>Mean values for bark structural characters in the third year</td>
<td>83 - 88</td>
</tr>
<tr>
<td>16</td>
<td>Provenance-wise performance for growth characters in the first year</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>Provenance-wise performance for test tap yield over three years</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>Provenance-wise comparison for leaf structural characters in third year</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>Provenance-wise performance for bark structural characters in third year</td>
<td>97</td>
</tr>
<tr>
<td>20</td>
<td>Coefficients of variation, heritability and genetic advance for growth characters in the first year</td>
<td>98</td>
</tr>
<tr>
<td>21</td>
<td>Coefficient of variation, heritability and genetic advance for test tap yield over three years.</td>
<td>99</td>
</tr>
<tr>
<td>22</td>
<td>Coefficient of variation, heritability and genetic advance for leaf structural characters in the third year</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>Coefficient of variation, heritability and genetic advance for bark structural characters in the third year</td>
<td>102</td>
</tr>
<tr>
<td>24</td>
<td>Correlation coefficients of growth characters with yield in the first year</td>
<td>106</td>
</tr>
<tr>
<td>25</td>
<td>Correlation coefficients of leaf structural characters with yield in the third year</td>
<td>110</td>
</tr>
</tbody>
</table>
26. Phenotypic correlation coefficients of bark structural characters with yield in the third year
27. Genotypic correlation coefficients of bark structural characters with yield in the third year
28. Environmental correlation coefficients of bark structural characters with yield in the third year
29. Factor loadings and communalities of the pooled characters
30. Distribution of wild genotypes in divergent clusters
31. Inter and Intra-cluster distances in D² analysis in the wild genotypes
32. Wild genotypes ranked on the basis of performance index
33. Mean values of selected characters for the selected genotypes
<table>
<thead>
<tr>
<th>Number</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A wild genotype (AC 426) showing hemispherical, distantly placed leaf storeys.</td>
</tr>
<tr>
<td>2</td>
<td>A wild genotype (AC 995) showing truncate, closely placed leaf storeys, with short petioles.</td>
</tr>
<tr>
<td>3</td>
<td>A wild genotype (AC 966) showing open leaf storey, with very long petioles placed at acute angles.</td>
</tr>
<tr>
<td>4</td>
<td>A wild genotype (RO 322) showing tall habit, with intermediately separated leaf storeys.</td>
</tr>
<tr>
<td>5</td>
<td>Leaflets showing elliptical (AC 604) and obovate (RO 316) shape.</td>
</tr>
<tr>
<td>6</td>
<td>Leaflets showing variations in size.</td>
</tr>
<tr>
<td>7</td>
<td>A wild genotype (MT 922) showing prominent extra floral nectaries.</td>
</tr>
<tr>
<td>8</td>
<td>Leaflets of two genotypes (RO 322, RO 330), showing dull and glossy nature.</td>
</tr>
<tr>
<td>9</td>
<td>Leaflets showing irregular (RO 886) (below) and smooth (RO 879) (above) leaf laminae.</td>
</tr>
<tr>
<td>10</td>
<td>Wild genotypes showing short, long and medium long petiolules.</td>
</tr>
<tr>
<td>11</td>
<td>A wild genotype (AC 979) showing well separated leaf laminae with downwardly oriented petiolules.</td>
</tr>
<tr>
<td>12</td>
<td>Leaves of a wild genotype (AC 453) having curved leaflet margins (which gives boat shaped cross-sectional appearance of the leaflets.</td>
</tr>
<tr>
<td>13-14</td>
<td>Sectional view of laminae of two Acre genotypes.</td>
</tr>
<tr>
<td>15-16</td>
<td>Sectional view of laminae of two Rondonian genotypes.</td>
</tr>
<tr>
<td>17-18</td>
<td>Sectional view of laminae of two Mato Grosso genotypes.</td>
</tr>
<tr>
<td>19</td>
<td>Cross sectional view of the lamina of an Acre genotype having thin midrib.</td>
</tr>
<tr>
<td>20</td>
<td>Cross sectional view of the lamina of an Acre genotype having thick midrib.</td>
</tr>
<tr>
<td>21</td>
<td>Cross sectional view of the lamina of a Rondonian genotype (RO 328), having thin midrib.</td>
</tr>
<tr>
<td>22</td>
<td>Cross sectional view of the lamina of a Rondonian genotype (RO 369), having thick midrib.</td>
</tr>
<tr>
<td>23</td>
<td>Cross sectional view of the lamina of a Mato Grosso genotype (MT 901), having thin midrib.</td>
</tr>
<tr>
<td>24</td>
<td>Cross sectional view of the lamina of a Mato Grosso genotype (MT 945), having thick midrib.</td>
</tr>
<tr>
<td>25-26</td>
<td>Cross sectional view of the laminae of two Acre genotypes having thin and thick palisade layer.</td>
</tr>
</tbody>
</table>
Cross sectional view of the laminae of two Rondonian genotypes having thin and thick palisade layer.

Cross sectional view of the laminae of two Mato Grosso genotypes having thin and thick palisade layer.

Cross sectional view of the laminae of two Acre genotypes having thin and thick spongy tissues.

Cross sectional view of the laminae of two Rondonian genotypes having thin and thick spongy layer.

Cross sectional view of the laminae of two Mato Grosso genotypes having thin and thick spongy layer.

Sections of the bark of a wild genotype showing the alignment of tissues in transverse, tangential longitudinal and radial longitudinal sections.

Radial longitudinal sections of the bark of two Acre genotypes with low number of latex vessel rows distantly placed and more number of latex vessel rows closely placed.

Radial longitudinal sections of the bark of two Rondonian genotypes with low number of latex vessel rows distantly placed and more number of latex vessel rows closely placed.

Radial longitudinal sections of the bark of two Mato Grosso genotypes with low number of latex vessel rows distantly placed and with more number of latex vessel rows closely placed.

Laticifers of Acre genotypes - narrow and large laticifers.

Laticifers of Rondonian genotypes - narrow and large laticifers.

Laticifers of Mato Grosso genotypes - narrow and large laticifers.

Tangential longitudinal sections of the bark of two Acre genotypes with lesser and more number of laticifers.

Tangential longitudinal sections of the bark of two Rondonian genotypes with lesser and more number of laticifers.

Tangential longitudinal sections of the bark of two Mato Grosso genotypes with lesser and more number of laticifers.

Epidermal peeling of the adaxial surface of the lamina showing absence of stomata.

Epidermal peeling of the abaxial surface of the lamina showing stomata.